Computational Modeling of Blast-induced Traumatic Brain Injury PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Modeling of Blast-induced Traumatic Brain Injury PDF full book. Access full book title Computational Modeling of Blast-induced Traumatic Brain Injury by Michelle Kyaw Nyein. Download full books in PDF and EPUB format.

Computational Modeling of Blast-induced Traumatic Brain Injury

Computational Modeling of Blast-induced Traumatic Brain Injury PDF Author: Michelle Kyaw Nyein
Publisher:
ISBN:
Category :
Languages : en
Pages : 113

Book Description
Blast-induced TBI has gained prominence in recent years due to the conflicts in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head; no injury thresholds have been established for blast effects on the head, and even direct transmission of the shock wave to the intracranial cavity is disputed. Still less is known about how personal protective equipment such as the Advanced Combat Helmet (ACH) affect the brain's response to blasts. The goal of this thesis is to investigate the mechanical response of the human brain to blasts and to study the effect of the ACH on the blast response of the head. To that end, a biofidelic computational model of the human head consisting of 11 distinct structures was developed from high-resolution medical imaging data. The model, known as the DVBIC/MIT Full Head Model (FHM), was subjected to blasts with incident overpressures of 6 atm and 30 atm and to a 5 m/s lateral impact. Results from the simulations demonstrate that blasts can penetrate the intracranial cavity and generate intracranial pressures that exceed the pressures produced during impact; the results suggest that blasts can plausibly directly cause traumatic brain injury. Subsequent investigation of the effect of the ACH on the blast response of the head found that the ACH provided minimal mitigation of blast effects. Results from the simulations conducted with the FHM extended to include the ACH suggest that the ACH can slightly reduce peak pressure magnitudes and delay peak pressure arrival times, but the benefits are minimal because the ACH does not protect the main pathways of load transmission from the blast to brain tissue. A more effective blast mitigation strategy might involve altering the helmet design to more completely surround the head in order to protect it from direct exposure to blast waves.

Computational Modeling of Blast-induced Traumatic Brain Injury

Computational Modeling of Blast-induced Traumatic Brain Injury PDF Author: Michelle Kyaw Nyein
Publisher:
ISBN:
Category :
Languages : en
Pages : 113

Book Description
Blast-induced TBI has gained prominence in recent years due to the conflicts in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head; no injury thresholds have been established for blast effects on the head, and even direct transmission of the shock wave to the intracranial cavity is disputed. Still less is known about how personal protective equipment such as the Advanced Combat Helmet (ACH) affect the brain's response to blasts. The goal of this thesis is to investigate the mechanical response of the human brain to blasts and to study the effect of the ACH on the blast response of the head. To that end, a biofidelic computational model of the human head consisting of 11 distinct structures was developed from high-resolution medical imaging data. The model, known as the DVBIC/MIT Full Head Model (FHM), was subjected to blasts with incident overpressures of 6 atm and 30 atm and to a 5 m/s lateral impact. Results from the simulations demonstrate that blasts can penetrate the intracranial cavity and generate intracranial pressures that exceed the pressures produced during impact; the results suggest that blasts can plausibly directly cause traumatic brain injury. Subsequent investigation of the effect of the ACH on the blast response of the head found that the ACH provided minimal mitigation of blast effects. Results from the simulations conducted with the FHM extended to include the ACH suggest that the ACH can slightly reduce peak pressure magnitudes and delay peak pressure arrival times, but the benefits are minimal because the ACH does not protect the main pathways of load transmission from the blast to brain tissue. A more effective blast mitigation strategy might involve altering the helmet design to more completely surround the head in order to protect it from direct exposure to blast waves.

Computational Modeling of Causal Mechanisms of Blast Wave Induced Traumatic Brain Injury - A Potential Tool for Injury Prevention

Computational Modeling of Causal Mechanisms of Blast Wave Induced Traumatic Brain Injury - A Potential Tool for Injury Prevention PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Book Description
The finite element simulation of blast wave formation, wave interactions with the head and subsequent response in the brain to blast exposure various conditions were carried out. Based on Bowen's curve, the maximum peak pressure transmitted to the scalp, skull and brain were about 3, 12 and 4 times respectively higher than the blast pressure received by the head. Increasing levels of overpressure produced higher intracranial pressure and strain. In contrast, increasing levels of impulse had adverse effects on the brain pressure. A person in a prone head-on position subjected to the ground explosion would sustain a greater damage in the brain as compared to one standing in a free blast condition. The effects of being adjacent to a reflecting wall were noticeable only on the region of the brain closer to the wall. The blast threats based on Bowen iso-damage curve of short duration regimen do not always produce the same level of compressive stress responses in the brain. These variations in tissue response predict potential multi-level damage outcomes rather than the same level estimated using the blast input-based tolerance curve of Bowen.

Computational Modeling of Primary Blast Effects on the Human Brain

Computational Modeling of Primary Blast Effects on the Human Brain PDF Author: Michelle Kyaw Nyein
Publisher:
ISBN:
Category :
Languages : en
Pages : 167

Book Description
Since the beginning of the military conflicts in Iraq and Afghanistan, there have been over 250,000 diagnoses of traumatic brain injury (TBI) in the U.S. military, with the majority of incidents caused by improvised explosive devices (IEDs). Despite the urgent need to understand blast-induced TBI in order to devise strategies for protection and treatment, much remains unknown about the mechanism of injury, the effects of personal protective equipment (PPE) such as helmets, and injury metrics and thresholds. In order to help address these gaps, this thesis has four objectives: 1) to present a comprehensive computational framework for investigating the mechanical response of the human head to blasts that includes blast-structure interaction codes, a detailed, three-dimensional model of a human head generated from high-resolution medical imaging data, and an experimentally-validated constitutive model for brain tissue; 2) to validate the framework against a broad range of experiments, including free-field blast tests involving physical human head surrogates and laboratory-scale shock tube tests involving animals and human cadavers; 3) to use the computational framework to investigate the effect of PPE on the propagation of stress waves within the brain following blast events and evaluate their blast protection performance; and 4) to develop interspecies scaling laws for the blast response of the brain that would allow translation of injury metrics from animals to humans.

Translational Research in Traumatic Brain Injury

Translational Research in Traumatic Brain Injury PDF Author: Daniel Laskowitz
Publisher: CRC Press
ISBN: 1498766579
Category : Medical
Languages : en
Pages : 388

Book Description
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme

Brain Tissue Biomechanics and Pathobiology of Blast-Induced Traumatic Brain Injury

Brain Tissue Biomechanics and Pathobiology of Blast-Induced Traumatic Brain Injury PDF Author: Sowmya N. Sundaresh
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Together, this illustrated the ability of these two enzymes to regulate the response to exposure of bTBI-induced pathogenic forms of tau. This study indicates the potential of targeting PP2A activity as a viable strategy for therapeutic intervention. In conclusion, this research expands our understanding of the complexity of brain tissue injury mechanics to inform computational models of TBI, illustrates the deleterious effect of pathogenic forms of tau induced by blast injury on cognitive function, and presents a potential target mechanism for the investigation of therapeutic strategies.

Modeling of Human Brain Tissues and Head Injuries Induced by Blast and Ballistic Impact

Modeling of Human Brain Tissues and Head Injuries Induced by Blast and Ballistic Impact PDF Author: Sahil Kulkarni
Publisher:
ISBN:
Category :
Languages : en
Pages : 224

Book Description
The use of body armor and combat helmets has reduced fatalities from explosions and ballistic attacks. However, frequent use of improvised explosive devices and continuing efforts to reduce the weight of each combat helmet have increased the risk of ballistic-impact and blast-induced traumatic brain injuries among soldiers. The objective of this dissertation research project is to develop predictive constitutive and computational models to be used in head injury diagnosis and to aid in the development of new combat helmets that can mitigate non-penetrating head injuries. A transversely isotropic visco-hyperelastic constitutive model is provided for soft tissues, which accounts for large deformations, high strain rates, and short-memory effects. The presented model is tested for a range of strain rates and for multiple loading scenarios based on available experimental data for porcine and human brain tissues. Using this constitutive relation, a finite element model of a helmet/head assembly is developed to study non-penetrating TBI. The effects of constitutive models and blast directions on finite elements simulations of blast induced TBI are investigated. Further, the effectiveness of combat helmets against non-penetrating TBI induced by blast and ballistic impacts is studied. Two types of combat helmets are considered: the advanced combat helmet (ACH) and the enhanced combat helmet (ECH). Spatial distributions and temporal variations of the intracranial pressure and stress components obtained in the simulations reveal significant differences in brain tissue responses to different constitutive models and blast directions. It is found that these combat helmets provide some level of protection against non-penetrating TBI and that the level of protection is higher for the ECH than the ACH. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151836

Brain Neurotrauma

Brain Neurotrauma PDF Author: Firas H. Kobeissy
Publisher: CRC Press
ISBN: 1466565993
Category : Medical
Languages : en
Pages : 718

Book Description
With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.

Biomechanical Analysis of Blast-induced Traumatic Brain Injury Using Multiscale Brain Modeling

Biomechanical Analysis of Blast-induced Traumatic Brain Injury Using Multiscale Brain Modeling PDF Author: Mahdi Sotudeh Chafi
Publisher:
ISBN:
Category : Brain
Languages : en
Pages : 408

Book Description


Neurotrauma

Neurotrauma PDF Author: Raj K. Narayan
Publisher: McGraw-Hill
ISBN: 9780070456624
Category : Medical
Languages : en
Pages : 1558

Book Description
This reference is a comprehensive work in the field of neurotrauma and critical care. It incorporates the fields of head injury, spinal injury and basic neurotrauma research into one source. The major emphasis is on the treatment of patients with head and spinal cord injury, including the management of all other problems that bear upon the care of these patients.

Correlation of Simulation with Clinical Assessments of Blast-Induced Traumatic Brain Injury

Correlation of Simulation with Clinical Assessments of Blast-Induced Traumatic Brain Injury PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Book Description