Computational Methods and Optimization Strategies for Parallel Transmission in Ultra High Field MRI PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Methods and Optimization Strategies for Parallel Transmission in Ultra High Field MRI PDF full book. Access full book title Computational Methods and Optimization Strategies for Parallel Transmission in Ultra High Field MRI by Mihir Rajendra Pendse. Download full books in PDF and EPUB format.

Computational Methods and Optimization Strategies for Parallel Transmission in Ultra High Field MRI

Computational Methods and Optimization Strategies for Parallel Transmission in Ultra High Field MRI PDF Author: Mihir Rajendra Pendse
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Magnetic resonance imaging (MRI) is a powerful imaging modality that is widely used in medicine for both clinical and research purposes. Despite its success, there is still a demand for improved image quality in the form of higher SNR and resolution and a promising approach to achieve this is with higher static field strengths (7 Tesla and above) corresponding to the ultra high frequency (UHF) regime of the RF pulse. At these frequencies, wavelength effects and complex interactions with biological tissue become problematic leading to field inhomogeneity artifacts and tissue heating concerns quantified by the specific absorption rate (SAR). This dissertation will focus on the excitation portion of the imaging process with parallel transmission (pTx) that involves using a transmit RF coil with multiple independent transmit channels. pTx is an effective way to address the challenges of ultra high field MRI through optimization of the transmitted pulse in a patient-specific way. We introduce the Iterative Minimization Procedure with Uncompressed Local SAR Estimate (IMPULSE) which is a novel distributed optimization algorithm that has favorable scaling properties and eliminates the need for virtual observation points (VOPs) thus resulting in superior SAR performance and shorter computation time. The optimization problem is to minimize SAR over a pulse sequence consisting of multiple slice excitations while ensuring that the flip angle inhomogeneity (FAI) for each excited slice is within some user specified tolerance. IMPULSE uses the alternating direction method of mulitpliers (ADMM) to split the optimization into two subproblems, a SAR-update and a FAI-update, that are solved at each iteration until convergence. The SAR-update can be formulated as an unconstrained minimization of a piecewise quadratic function which can be solved efficiently by using a bundle method to build a piecewise linear surrogate that can easily be minimized. The computation time for the FAI-update can be reduced by exploiting parallelization and using an efficient algorithm for projection of a point onto an ellipsoid. IMPULSE achieves superior SAR performance and reduced computation time compared to a conventional approach using virtual observation points or compared to using a generic sequential quadratic programming (SQP) solver in MATLAB. Using the Duke head model consisting of over six million voxels, minimum SAR pTx pulses were designed for 120 slices within 45 seconds with an FAI tolerance of 5\% at each slice. IMPULSE combined with variable rate selective excitation (VERSE) can also be used to improve SAR performance and reduce computation time for simultaneous multislice (SMS) excitation with a pTx-SMS pulse. This method (IMPULSE-SMS) was used for the pTx-SMS task of the ISMRM RF Pulse Design competition in 2016 and resulted in a pulse that was about 20\% shorter than the second best submission and about 10 times shorter than a conventional approach (SAR-unaware pulse design without VERSE). Increasing the number of transmit channels in a coil can give more degrees of freedom to achieve flip angle uniformity and reduce SAR but also increases cost and complexity of the hardware. Studying the performance of massively parallel transmit arrays in simulation can help determine whether investment in these arrays is justified based on new applications that are enabled. An 84 channel loop array for 10.5T with 6 rows and 14 columns was simulated using the Ella body model and applied to two novel applications: power independent of number of slices (PINS) pulses combined with pTx for SMS excitation and SAR focusing for therapeutic hyperthermia. Using this coil in addition to an insertable head gradient (slew rate of 1500 T/m/s), a pulse duration of about 13ms for a 16 slice coronal excitation with 0.4mm slice thickness with 10\% FAI was achieved. SAR focusing is possible for a range of locations throughout the head (although focusing is better at the periphery than at the center). A solution to a simplified bioheat equation indicates that achievable temperature rise would be within acceptable range for some forms of hyperthermia (but not high enough to achieve for ablation). A significant concern in SAR-aware pTx is mismatch between the patient and the tissue model used for SAR estimation since running the optimization on a mismatched model can result in significantly higher SAR compared to a perfect match. One technique to introduce robustness to this mismatch is to use the SAR terms for voxels of multiple tissue models (rather than a single model) in the cost function of IMPULSE. Results indicate that using multiple poorly matched models can achieve similar SAR performance compared to using a single closely matched model indicating that the multiple model approach is a way to get by with a sparse model library that doesn't fully represent the entire human population. A more sophisticated approach is to use deep learning to predict the 3D SAR maps from measured magnetic field maps. An initial implementation of this concept shows promise but is still inconclusive.

Computational Methods and Optimization Strategies for Parallel Transmission in Ultra High Field MRI

Computational Methods and Optimization Strategies for Parallel Transmission in Ultra High Field MRI PDF Author: Mihir Rajendra Pendse
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Magnetic resonance imaging (MRI) is a powerful imaging modality that is widely used in medicine for both clinical and research purposes. Despite its success, there is still a demand for improved image quality in the form of higher SNR and resolution and a promising approach to achieve this is with higher static field strengths (7 Tesla and above) corresponding to the ultra high frequency (UHF) regime of the RF pulse. At these frequencies, wavelength effects and complex interactions with biological tissue become problematic leading to field inhomogeneity artifacts and tissue heating concerns quantified by the specific absorption rate (SAR). This dissertation will focus on the excitation portion of the imaging process with parallel transmission (pTx) that involves using a transmit RF coil with multiple independent transmit channels. pTx is an effective way to address the challenges of ultra high field MRI through optimization of the transmitted pulse in a patient-specific way. We introduce the Iterative Minimization Procedure with Uncompressed Local SAR Estimate (IMPULSE) which is a novel distributed optimization algorithm that has favorable scaling properties and eliminates the need for virtual observation points (VOPs) thus resulting in superior SAR performance and shorter computation time. The optimization problem is to minimize SAR over a pulse sequence consisting of multiple slice excitations while ensuring that the flip angle inhomogeneity (FAI) for each excited slice is within some user specified tolerance. IMPULSE uses the alternating direction method of mulitpliers (ADMM) to split the optimization into two subproblems, a SAR-update and a FAI-update, that are solved at each iteration until convergence. The SAR-update can be formulated as an unconstrained minimization of a piecewise quadratic function which can be solved efficiently by using a bundle method to build a piecewise linear surrogate that can easily be minimized. The computation time for the FAI-update can be reduced by exploiting parallelization and using an efficient algorithm for projection of a point onto an ellipsoid. IMPULSE achieves superior SAR performance and reduced computation time compared to a conventional approach using virtual observation points or compared to using a generic sequential quadratic programming (SQP) solver in MATLAB. Using the Duke head model consisting of over six million voxels, minimum SAR pTx pulses were designed for 120 slices within 45 seconds with an FAI tolerance of 5\% at each slice. IMPULSE combined with variable rate selective excitation (VERSE) can also be used to improve SAR performance and reduce computation time for simultaneous multislice (SMS) excitation with a pTx-SMS pulse. This method (IMPULSE-SMS) was used for the pTx-SMS task of the ISMRM RF Pulse Design competition in 2016 and resulted in a pulse that was about 20\% shorter than the second best submission and about 10 times shorter than a conventional approach (SAR-unaware pulse design without VERSE). Increasing the number of transmit channels in a coil can give more degrees of freedom to achieve flip angle uniformity and reduce SAR but also increases cost and complexity of the hardware. Studying the performance of massively parallel transmit arrays in simulation can help determine whether investment in these arrays is justified based on new applications that are enabled. An 84 channel loop array for 10.5T with 6 rows and 14 columns was simulated using the Ella body model and applied to two novel applications: power independent of number of slices (PINS) pulses combined with pTx for SMS excitation and SAR focusing for therapeutic hyperthermia. Using this coil in addition to an insertable head gradient (slew rate of 1500 T/m/s), a pulse duration of about 13ms for a 16 slice coronal excitation with 0.4mm slice thickness with 10\% FAI was achieved. SAR focusing is possible for a range of locations throughout the head (although focusing is better at the periphery than at the center). A solution to a simplified bioheat equation indicates that achievable temperature rise would be within acceptable range for some forms of hyperthermia (but not high enough to achieve for ablation). A significant concern in SAR-aware pTx is mismatch between the patient and the tissue model used for SAR estimation since running the optimization on a mismatched model can result in significantly higher SAR compared to a perfect match. One technique to introduce robustness to this mismatch is to use the SAR terms for voxels of multiple tissue models (rather than a single model) in the cost function of IMPULSE. Results indicate that using multiple poorly matched models can achieve similar SAR performance compared to using a single closely matched model indicating that the multiple model approach is a way to get by with a sparse model library that doesn't fully represent the entire human population. A more sophisticated approach is to use deep learning to predict the 3D SAR maps from measured magnetic field maps. An initial implementation of this concept shows promise but is still inconclusive.

Computational Approaches to Parallel Transmission MRI.

Computational Approaches to Parallel Transmission MRI. PDF Author: Christopher Mirfin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Ultra-High Field Neuro MRI

Ultra-High Field Neuro MRI PDF Author: Karin Markenroth Bloch
Publisher: Elsevier
ISBN: 0323999530
Category : Computers
Languages : en
Pages : 628

Book Description
Ultra-High Field Neuro MRI is a comprehensive reference and educational resource on the current state of neuroimaging at ultra-high field (UHF), with an emphasis on 7T. Sections cover the MR physics aspects of UHF, including the technical challenges and practical solutions that have enabled the rapid growth of 7T MRI. Individual chapters are dedicated to the different techniques that most strongly benefit from UHF, as well as chapters with a focus on different application areas in anatomical, functional and metabolic imaging. Finally, several chapters highlight the neurological and psychiatric applications for which 7T has shown benefits. The book is aimed at scientists who develop MR technologies and support clinical and neuroscience research, as well as users who want to benefit from UHF neuro MR techniques in their work. It also provides a comprehensive introduction to the field. Presents the opportunities and technical challenges presented by MRI at ultra-high field Describes advanced ultra-high field neuro MR techniques for clinical and neuroscience applications Enables the reader to critically assess the specific UHF advantages over currently available techniques at clinical field strengths

Development of Clinically Applicable Parallel Transmit Methods for Ultra-High Field MRI

Development of Clinically Applicable Parallel Transmit Methods for Ultra-High Field MRI PDF Author: Jürgen Herrler
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Parallel Imaging in Clinical MR Applications

Parallel Imaging in Clinical MR Applications PDF Author: Stefan O. Schönberg
Publisher: Springer Science & Business Media
ISBN: 354068879X
Category : Medical
Languages : en
Pages : 548

Book Description
This book presents the first in-depth introduction to parallel imaging techniques and, in particular, to the application of parallel imaging in clinical MRI. It will provide readers with a broader understanding of the fundamental principles of parallel imaging and of the advantages and disadvantages of specific MR protocols in clinical applications in all parts of the body at 1.5 and 3 Tesla.

The Role of Neuroimaging in Cerebral Small Vessel Disease

The Role of Neuroimaging in Cerebral Small Vessel Disease PDF Author: Haitao Li
Publisher: Frontiers Media SA
ISBN: 2832519423
Category : Medical
Languages : en
Pages : 202

Book Description


MRI from Picture to Proton

MRI from Picture to Proton PDF Author: Donald W. McRobbie
Publisher: Cambridge University Press
ISBN: 1316688259
Category : Medical
Languages : en
Pages : 405

Book Description
MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.

In Vivo NMR Spectroscopy

In Vivo NMR Spectroscopy PDF Author: Robin A. de Graaf
Publisher: John Wiley & Sons
ISBN: 1119382548
Category : Science
Languages : en
Pages : 584

Book Description
Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.

An Introduction to Variational Autoencoders

An Introduction to Variational Autoencoders PDF Author: Diederik P. Kingma
Publisher:
ISBN: 9781680836226
Category : Computers
Languages : en
Pages : 102

Book Description
An Introduction to Variational Autoencoders provides a quick summary for the of a topic that has become an important tool in modern-day deep learning techniques.

Visualizing Chemistry

Visualizing Chemistry PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030916463X
Category : Science
Languages : en
Pages : 222

Book Description
Scientists and engineers have long relied on the power of imaging techniques to help see objects invisible to the naked eye, and thus, to advance scientific knowledge. These experts are constantly pushing the limits of technology in pursuit of chemical imagingâ€"the ability to visualize molecular structures and chemical composition in time and space as actual events unfoldâ€"from the smallest dimension of a biological system to the widest expanse of a distant galaxy. Chemical imaging has a variety of applications for almost every facet of our daily lives, ranging from medical diagnosis and treatment to the study and design of material properties in new products. In addition to highlighting advances in chemical imaging that could have the greatest impact on critical problems in science and technology, Visualizing Chemistry reviews the current state of chemical imaging technology, identifies promising future developments and their applications, and suggests a research and educational agenda to enable breakthrough improvements.