Computational Materials Science Across Time and Length Scales PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Materials Science Across Time and Length Scales PDF full book. Access full book title Computational Materials Science Across Time and Length Scales by . Download full books in PDF and EPUB format.

Computational Materials Science Across Time and Length Scales

Computational Materials Science Across Time and Length Scales PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 293

Book Description


Computational Materials Science Across Time and Length Scales

Computational Materials Science Across Time and Length Scales PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 293

Book Description


Introduction to Computational Materials Science

Introduction to Computational Materials Science PDF Author: Richard LeSar
Publisher: Cambridge University Press
ISBN: 1107328144
Category : Technology & Engineering
Languages : en
Pages : 429

Book Description
Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.

Trends in Computational Nanomechanics

Trends in Computational Nanomechanics PDF Author: Traian Dumitrica
Publisher: Springer Science & Business Media
ISBN: 1402097859
Category : Technology & Engineering
Languages : en
Pages : 628

Book Description
Trends in Computational Nanomechanics reviews recent advances in analytical and computational modeling frameworks to describe the mechanics of materials on scales ranging from the atomistic, through the microstructure or transitional, and up to the continuum. The book presents new approaches in the theory of nanosystems, recent developments in theoretical and computational methods for studying problems in which multiple length and/or time scales must be simultaneously resolved, as well as example applications in nanomechanics. This title will be a useful tool of reference for professionals, graduates and undergraduates interested in Computational Chemistry and Physics, Materials Science, Nanotechnology.

Multiscale Paradigms in Integrated Computational Materials Science and Engineering

Multiscale Paradigms in Integrated Computational Materials Science and Engineering PDF Author: Pierre Deymier
Publisher: Springer
ISBN: 3319245295
Category : Science
Languages : en
Pages : 305

Book Description
This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

Computational Materials Science and Chemistry

Computational Materials Science and Chemistry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought toge ...

Integrated Computational Materials Engineering

Integrated Computational Materials Engineering PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309178215
Category : Technology & Engineering
Languages : en
Pages : 152

Book Description
Integrated computational materials engineering (ICME) is an emerging discipline that can accelerate materials development and unify design and manufacturing. Developing ICME is a grand challenge that could provide significant economic benefit. To help develop a strategy for development of this new technology area, DOE and DoD asked the NRC to explore its benefits and promises, including the benefits of a comprehensive ICME capability; to establish a strategy for development and maintenance of an ICME infrastructure, and to make recommendations about how best to meet these opportunities. This book provides a vision for ICME, a review of case studies and lessons learned, an analysis of technological barriers, and an evaluation of ways to overcome cultural and organizational challenges to develop the discipline.

Simulation

Simulation PDF Author: Johannes Lenhard
Publisher: Springer Science & Business Media
ISBN: 1402053754
Category : Science
Languages : en
Pages : 221

Book Description
This book examines the historical roots and evolution of simulation from an epistemological, institutional and technical perspective. Rich case studies go far beyond documentation of simulation’s capacity for application in many domains; they also explore the "functional" and "structural" debate that continues to traverse simulation thought and action. This book is an essential contribution to the assessment of simulation as scientific instrument.

Integrated Computational Materials Engineering (ICME)

Integrated Computational Materials Engineering (ICME) PDF Author: Somnath Ghosh
Publisher: Springer Nature
ISBN: 3030405621
Category : Technology & Engineering
Languages : en
Pages : 416

Book Description
​This book introduces research advances in Integrated Computational Materials Engineering (ICME) that have taken place under the aegis of the AFOSR/AFRL sponsored Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University. Its author team consists of leading researchers in ICME from prominent academic institutions and the Air Force Research Laboratory. The book examines state-of-the-art advances in physics-based, multi-scale, computational-experimental methods and models for structural materials like polymer-matrix composites and metallic alloys. The book emphasizes Ni-based superalloys and epoxy matrix carbon-fiber composites and encompasses atomistic scales, meso-scales of coarse-grained models and discrete dislocations, and micro-scales of poly-phase and polycrystalline microstructures. Other critical phenomena investigated include the relationship between microstructural morphology, crystallography, and mechanisms to the material response at different scales; methods of identifying representative volume elements using microstructure and material characterization, and robust deterministic and probabilistic modeling of deformation and damage. Encompassing a slate of topics that enable readers to comprehend and approach ICME-related issues involved in predicting material performance and failure, the book is ideal for mechanical, civil, and aerospace engineers, and materials scientists, in in academic, government, and industrial laboratories.

Materials Science and Engineering

Materials Science and Engineering PDF Author: Krishna Rajan
Publisher: Elsevier Inc. Chapters
ISBN: 0128059311
Category : Technology & Engineering
Languages : en
Pages : 32

Book Description
Studying structure–property relationships is an accepted paradigm in materials science, yet these relationships are often not linear and the challenge is to seek patterns among multiple length and time scales. There is rarely a single multiscale theory or experiment that can meaningfully and accurately capture such information. In this chapter we introduce the rationale as to why we need informatics by briefly summarizing the challenges of information complexity one has to deal with in material science, in order to systematically establish structure–property–processing relationships. Some of the concepts and topics to be covered in this book are introduced, including information networks, data mining, databases, and combinatorial experiments to mention a few. The value of “materials informatics” lies in its ability to permit one to survey complex, multiscale information in a high-throughput, statistically robust and yet physically meaningful manner.

Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems PDF Author: Thomas S. Gates
Publisher:
ISBN:
Category : Composite materials
Languages : en
Pages : 24

Book Description