Computational Investigation of Impingement Cooling for Regeneratively Cooled Rocket Nozzles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Investigation of Impingement Cooling for Regeneratively Cooled Rocket Nozzles PDF full book. Access full book title Computational Investigation of Impingement Cooling for Regeneratively Cooled Rocket Nozzles by Bianca A. De Angelo. Download full books in PDF and EPUB format.

Computational Investigation of Impingement Cooling for Regeneratively Cooled Rocket Nozzles

Computational Investigation of Impingement Cooling for Regeneratively Cooled Rocket Nozzles PDF Author: Bianca A. De Angelo
Publisher:
ISBN:
Category : Liquid propellant rocket engines
Languages : en
Pages : 182

Book Description
Jet impingement cooling is an internal cooling configuration used in the thermal management of temperature sensitive systems. With rocket engine combustion temperatures rising as high as 3600 K, it is essential for a cooling method to be applied to ensure that the nozzle integrity can be maintained. Therefore, a novel heat transfer study is conducted to investigate if jet impingement cooling is feasible for a regenerative cooling rocket nozzle application. Regenerative cooling for liquid propellant rockets has been widely studied. However, to the best of the author’s knowledge, there is currently no literature describing this method in conjunction with impingement cooling techniques. In this study, a literary empirical model my Martin (1977) is compared to a computational fluid dynamics (CFD) model designed for single and round nozzle (SRN) jet impingement with conjugate heat transfer (CHT) analysis. The CHT analysis is utilized to investigate the resulting surface temperatures in the presence of convection and lateral conduction effects while investigating the Nusselt number (Nu) and temperature profiles of the impingement configuration. Heat transfer data is first extracted for air impinging onto a heated flat plate, whose results are used as the benchmarking model. The model is then altered to assess its application feasibility for a regeneratively cooled rocket nozzle throat similar to that of the Space Shuttle Main Engine (SSME) with LOX/LH2 propellants. A 1-D thermal analysis of supercritical LH2 coolant at 52.4 K and 24.8 MPa for the SSME with various nozzle wall materials, such as Stainless Steel 304 (SS 304), Inconel x-750, copper and ABS plastic, is conducted. The material selections were chosen to cover a range of thermal conductivities. It was found that none of the selected materials are feasible with impingement cooling alone due to the extremely high heat transfer rates within the throat. With material temperature limitations below 200 K. the materials cannot withstand the high stresses acting on the nozzle even with alterations to the benchmark model. Therefore, it is concluded that an additional cooling method is required to increase the hot-side thermal resistance. To ease the thermal stresses on the remaining metals, an average film cooling effectiveness (n) of 0.5 was assumed, to stimulate the benefit of film cooling. Having been incorporated into the hot gas side calculations, it decreased the adiabatic wall temperature from 3561 K to 1667.3 K, allowing the materials to be properly cooled on the inner side of the nozzle. Even with this assisted cooling method added, it is concluded that only SS 304 and Inconel x-750, with their low material resistance and high temperature capabilities, were capable of withstanding the rocket nozzle temperatures. CFD simulations for these two materials are studied for their feasibility of a SSME-like nozzle throat region. It was concluded that film cooling cannot be eliminated from the system with the SSME parameters studied. Additionally, with minimal differences between the 1-D analysis and CFD simulations, lateral conduction effects are minimal, which proves 1-D analysis is sufficient for future analysis.

Computational Investigation of Impingement Cooling for Regeneratively Cooled Rocket Nozzles

Computational Investigation of Impingement Cooling for Regeneratively Cooled Rocket Nozzles PDF Author: Bianca A. De Angelo
Publisher:
ISBN:
Category : Liquid propellant rocket engines
Languages : en
Pages : 182

Book Description
Jet impingement cooling is an internal cooling configuration used in the thermal management of temperature sensitive systems. With rocket engine combustion temperatures rising as high as 3600 K, it is essential for a cooling method to be applied to ensure that the nozzle integrity can be maintained. Therefore, a novel heat transfer study is conducted to investigate if jet impingement cooling is feasible for a regenerative cooling rocket nozzle application. Regenerative cooling for liquid propellant rockets has been widely studied. However, to the best of the author’s knowledge, there is currently no literature describing this method in conjunction with impingement cooling techniques. In this study, a literary empirical model my Martin (1977) is compared to a computational fluid dynamics (CFD) model designed for single and round nozzle (SRN) jet impingement with conjugate heat transfer (CHT) analysis. The CHT analysis is utilized to investigate the resulting surface temperatures in the presence of convection and lateral conduction effects while investigating the Nusselt number (Nu) and temperature profiles of the impingement configuration. Heat transfer data is first extracted for air impinging onto a heated flat plate, whose results are used as the benchmarking model. The model is then altered to assess its application feasibility for a regeneratively cooled rocket nozzle throat similar to that of the Space Shuttle Main Engine (SSME) with LOX/LH2 propellants. A 1-D thermal analysis of supercritical LH2 coolant at 52.4 K and 24.8 MPa for the SSME with various nozzle wall materials, such as Stainless Steel 304 (SS 304), Inconel x-750, copper and ABS plastic, is conducted. The material selections were chosen to cover a range of thermal conductivities. It was found that none of the selected materials are feasible with impingement cooling alone due to the extremely high heat transfer rates within the throat. With material temperature limitations below 200 K. the materials cannot withstand the high stresses acting on the nozzle even with alterations to the benchmark model. Therefore, it is concluded that an additional cooling method is required to increase the hot-side thermal resistance. To ease the thermal stresses on the remaining metals, an average film cooling effectiveness (n) of 0.5 was assumed, to stimulate the benefit of film cooling. Having been incorporated into the hot gas side calculations, it decreased the adiabatic wall temperature from 3561 K to 1667.3 K, allowing the materials to be properly cooled on the inner side of the nozzle. Even with this assisted cooling method added, it is concluded that only SS 304 and Inconel x-750, with their low material resistance and high temperature capabilities, were capable of withstanding the rocket nozzle temperatures. CFD simulations for these two materials are studied for their feasibility of a SSME-like nozzle throat region. It was concluded that film cooling cannot be eliminated from the system with the SSME parameters studied. Additionally, with minimal differences between the 1-D analysis and CFD simulations, lateral conduction effects are minimal, which proves 1-D analysis is sufficient for future analysis.

Computational Investigation of Air Cooling Through Channels with Jet Impingement and Ribbed Target Surfaces in the Presence of Cross Flow Cooling

Computational Investigation of Air Cooling Through Channels with Jet Impingement and Ribbed Target Surfaces in the Presence of Cross Flow Cooling PDF Author: Christian Corvera
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Experimental Studies of the Heat Transfer to Rbcc Rocket Nozzles for Cfd Application to Design Methodologies

Experimental Studies of the Heat Transfer to Rbcc Rocket Nozzles for Cfd Application to Design Methodologies PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781723725302
Category : Science
Languages : en
Pages : 28

Book Description
Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.Santoro, Robert J. and Pal, SibtoshMarshall Space Flight CenterHEAT TRANSFER; ROCKET NOZZLES; COMPUTATIONAL FLUID DYNAMICS; LIQUID COOLING; HYDROGEN; OXYGEN; PROPELLANTS; HEAT FLUX; TEMPERATURE PROFILES; WALL TEMPERATURE

An Analysis of Nuclear-rocket Nozzle Cooling

An Analysis of Nuclear-rocket Nozzle Cooling PDF Author: William H. Robbins
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 32

Book Description
A nuclear-rocket regenerative-cooling analysis was conducted over a range of reactor power of 46 to 1600 megawatts and is summarized herein. Although the propellant (hydrogen) is characterized by a large heat-sink capacity, an analysis of the local heat-flux capability of the coolant at the nozzle throat indicated that, for conventional values of system pressure drop, the cooling capability was inadequate to maintain a selected wall temperature of 1440 R. Several techniques for improving the cooling capability were discussed, for example, high pressure drop, high wall temperature, refractory wall coatings, thin highly conductive walls, and film cooling. In any specific design a combination of methods will probably be utilized to achieve successful cooling.

Nozzle Guide Vane Sweeping Jet Impingement Cooling

Nozzle Guide Vane Sweeping Jet Impingement Cooling PDF Author: Lucas Agricola
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 91

Book Description
Sweeping jet impingement cooling was investigated in a gas turbine nozzle guide vane design with an engine-relevant Biot number of 0.3. Sweeping jets were created with fluidic oscillators and were compared to steady jets produced by cylindrical orifices (with length-to-diameter ratio of 1), the current state-of-the-art in engine designs. Experiments were performed in a low speed linear cascade with additively manufactured test pieces. The impingement cooling geometries were examined at multiple coolant mass flow rates and freestream turbulence intensities. The overall effectiveness of each cooling geometry was calculated using thermocouple measurements of the freestream and coolant temperatures, and infrared thermography measurements of the vane external surface temperature. A computational thermal inertia technique was used to determine the internal Nusselt numbers. The heat transfer provided by steady impinging jets produced a higher overall effectiveness and Nusselt number in the leading edge geometry. The sweeping jets provided more uniform heat transfer, reducing thermal gradients near the stagnation point. Pressure drop across each jet geometry was measured at a range of applicable mass flow rates. Fluidic oscillators were shown to create similar pressure drop to circular orifice holes when additive manufacturing abilities were fully incorporated in the nozzle guide vane internal cooling designs.

Effect of Nozzle Angle on Jet Impingement Cooling System

Effect of Nozzle Angle on Jet Impingement Cooling System PDF Author: Khaider Abu Bakar
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 74

Book Description
Cooling system using jet impingement is already widely used in industries nowadays. There were various approaches that have been investigated in order to produce more efficient jet impingement cooling system. This thesis is study about the effect of the nozzle angle on jet impingement in order to identify the relationship in heat transfer. Besides, investigation on spacing distance between nozzle's edge to the impingement surface and Reynolds number at certain angle also identified in this study. Those studies are needed parallel to the current researchers endeavor for future development of cooling system in global industries. The experiment were perform by vary 3 major parameters such as angle of the nozzle (30°, 45°, 60°, and 90°), distance between nozzle's edge to the impinge surface (H/d= 2, 4, 6, and 8) and also Reynolds number (Re= 2300, 1960,930 and 500).The heat source are heated at 100 0C and cooled down by the flow of air from the nozzle. The heat source temperature after cooling are measured and collected. The result discovers about the relationship nozzle angle for jet impingement cooling system which is heat transfer are more efficient when the angle of nozzle approaching to the normal line as the Nusselt Number are more higher at 90° in range 31.5 w/m2K of heat transfer coefficient compare to the lower angles of the nozzle. Furthermore, higher Reynolds number and close range of distance between nozzle's edges to impingement surface will also gives high Nusselt number which means both also effective cooling effects for the systems.

International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 980

Book Description


Analysis of Film Cooling in Rocket Nozzles

Analysis of Film Cooling in Rocket Nozzles PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781729303962
Category : Science
Languages : en
Pages : 54

Book Description
This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS (Finite Difference Navier-Stokes) to use a Reynolds Analogy-based method. This task was completed in August, 1992. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. This task was completed in September, 1992. Task 3 required the computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. This task was completed in July, 1993. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750R to about 1050R by the film cooling. The average wall heat flux is reduced by a factor of 3. Woodbury, Keith A. Unspecified Center...

Investigation of Jet Impingement Cooling Using High Prandtl Number Fluids and Ammonia for Military Applications

Investigation of Jet Impingement Cooling Using High Prandtl Number Fluids and Ammonia for Military Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The objective of this project was to perform a comprehensive numerical study for the prediction of conjugate heat transfer during jet impingement cooling. Calculations were done primarily for two working fluids: MIL-7808 and ammonia. A number of substrate materials were studied. The investigation considered both free and confined jet configurations using circular and slot nozzles. Fifteen different disk or plate thicknesses ranging from 0 to 12 mm and eleven different nozzle heights from 0.4 mm to 12.5 mm were used. A number of heat source patterns were considered to explore the effects of magnitude and location of heat generation. Both steady state heat transfer and the transient start-up of power were investigated. It was found that the magnitude of local heat transfer coefficient or Nusselt number decreased with time at all locations on the disk. A higher heat transfer coefficient at the impingement location was seen at a smaller thickness, whereas a thicker plate provided a more uniform distribution of heat transfer coefficient. Materials with a higher thermal conductivity provided more uniform distribution of interface temperature as well as the heat transfer coefficient. Both local and average heat transfer coefficient increased with Reynolds number. For a given flow rate, a higher heat transfer coefficient was obtained with smaller nozzle diameter. Compared to MIL-7808 and FC-77, ammonia provided smaller solid-fluid interface temperature and higher heat transfer coefficient.

Experimental Investigation of a 7 by 7 Nozzle Jet Array for Dynamic Impingement Cooling

Experimental Investigation of a 7 by 7 Nozzle Jet Array for Dynamic Impingement Cooling PDF Author: Frank Haucke
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description