Discrete Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Discrete Optimization PDF full book. Access full book title Discrete Optimization by R. Gary Parker. Download full books in PDF and EPUB format.

Discrete Optimization

Discrete Optimization PDF Author: R. Gary Parker
Publisher: Elsevier
ISBN: 1483294803
Category : Mathematics
Languages : en
Pages : 485

Book Description
This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas of linear programming, graph theory, and combinatorics--prerequisites for readers of the text. Numerous exercises are included at the end of each chapter.

Discrete Optimization

Discrete Optimization PDF Author: R. Gary Parker
Publisher: Elsevier
ISBN: 1483294803
Category : Mathematics
Languages : en
Pages : 485

Book Description
This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas of linear programming, graph theory, and combinatorics--prerequisites for readers of the text. Numerous exercises are included at the end of each chapter.

Recent Advances and Historical Development of Vector Optimization

Recent Advances and Historical Development of Vector Optimization PDF Author: Johannes Jahn
Publisher: Springer Science & Business Media
ISBN: 3642466184
Category : Business & Economics
Languages : en
Pages : 409

Book Description
In vector optimization one investigates optimization problems in an abstract setting which have a not necessarily real-valued objective function. This scientific discipline is closely related to multi-objective optimization and multi-criteria decision making. This book contains refereed contributions to the "International Conference on Vector Optimization" held at the Technical University of Darmstadt from August 4-7, 1986. This meeting was an interdisciplinary forum devoted to new results in the theory, to applications as well as to the solution of vector optimization problems which are relevant in practice. Because of the great variety of topics covered by the contributions, the 25 articles of this volume are organized in different sections: Historical retrospect, mathematical theory, goal setting and decision making, engineering applications, and related topics. The papers of the invited State-of-the-Art Tutorials given by Professors J.M. Borwein, H. Eschenauer, W. Stadler and P.L. Yu are also included.

Bioinspired Computation in Combinatorial Optimization

Bioinspired Computation in Combinatorial Optimization PDF Author: Frank Neumann
Publisher: Springer Science & Business Media
ISBN: 3642165443
Category : Mathematics
Languages : en
Pages : 215

Book Description
Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.

Theory of Computational Complexity

Theory of Computational Complexity PDF Author: Ding-Zhu Du
Publisher: John Wiley & Sons
ISBN: 1118031164
Category : Mathematics
Languages : en
Pages : 511

Book Description
A complete treatment of fundamentals and recent advances in complexity theory Complexity theory studies the inherent difficulties of solving algorithmic problems by digital computers. This comprehensive work discusses the major topics in complexity theory, including fundamental topics as well as recent breakthroughs not previously available in book form. Theory of Computational Complexity offers a thorough presentation of the fundamentals of complexity theory, including NP-completeness theory, the polynomial-time hierarchy, relativization, and the application to cryptography. It also examines the theory of nonuniform computational complexity, including the computational models of decision trees and Boolean circuits, and the notion of polynomial-time isomorphism. The theory of probabilistic complexity, which studies complexity issues related to randomized computation as well as interactive proof systems and probabilistically checkable proofs, is also covered. Extraordinary in both its breadth and depth, this volume: * Provides complete proofs of recent breakthroughs in complexity theory * Presents results in well-defined form with complete proofs and numerous exercises * Includes scores of graphs and figures to clarify difficult material An invaluable resource for researchers as well as an important guide for graduate and advanced undergraduate students, Theory of Computational Complexity is destined to become the standard reference in the field.

Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming PDF Author: Yurii Nesterov
Publisher: SIAM
ISBN: 9781611970791
Category : Mathematics
Languages : en
Pages : 414

Book Description
Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Complexity Classifications of Boolean Constraint Satisfaction Problems

Complexity Classifications of Boolean Constraint Satisfaction Problems PDF Author: Nadia Creignou
Publisher: SIAM
ISBN: 0898714796
Category : Mathematics
Languages : en
Pages : 112

Book Description
Presents a novel form of a compendium that classifies an infinite number of problems by using a rule-based approach.

Complexity and Approximation

Complexity and Approximation PDF Author: Giorgio Ausiello
Publisher: Springer Science & Business Media
ISBN: 3642584128
Category : Computers
Languages : en
Pages : 536

Book Description
This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.

Robust Discrete Optimization and Its Applications

Robust Discrete Optimization and Its Applications PDF Author: Panos Kouvelis
Publisher: Springer Science & Business Media
ISBN: 1475726201
Category : Mathematics
Languages : en
Pages : 373

Book Description
This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.

Computational Complexity

Computational Complexity PDF Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609

Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization PDF Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374

Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.