Computational and Experimental Evaluation of Nanofluids in Heating and Cooling Forced Convection Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational and Experimental Evaluation of Nanofluids in Heating and Cooling Forced Convection Applications PDF full book. Access full book title Computational and Experimental Evaluation of Nanofluids in Heating and Cooling Forced Convection Applications by Roy T. Strandberg. Download full books in PDF and EPUB format.

Computational and Experimental Evaluation of Nanofluids in Heating and Cooling Forced Convection Applications

Computational and Experimental Evaluation of Nanofluids in Heating and Cooling Forced Convection Applications PDF Author: Roy T. Strandberg
Publisher:
ISBN:
Category : Aluminum oxide
Languages : en
Pages : 324

Book Description
The purpose of the research was to examine the heat transfer and fluid dynamic performance of various nanofluids in heating and cooling applications using empirical and computational methods. Two experiments were performed to characterize and compare the performance of a Al2O3/60% ethylene glycol (60% EG) nanofluid to that of its base fluid. In the first experiment, the nanofluid was comprised of Al2O3 nanoparticles with 1% volumetric concentration in a 60% ethylene glycol/40% water (60% EG by mass) solution to that of 60%EG in a liquid to air heat exchanger. The test bed used in the experiment was built to simulate a small air handling system typical of that used in heating, ventilating and air conditioning (HVAC) applications. Previously established empirical correlations for thermophysical properties of fluids were used to determine the values of various parameters (e.g. Nusselt number, Reynolds number, and Prandtl number). The testing shows that the 1% Al2O3 nanofluid generates a marginally higher heat rate than the 60% EG under certain conditions. At Re=3,000, the nanofluid produced a heat rate that was 2% higher than that of the 60% EG. The empirically determined Nusselt number associated with the convection inside the coil tubing follows the behavior predicted by the Dittus-Boelter correlation quite well (R2=0.97), while the empirically determined Nusselt number for the 60% EG follows the Petukhov correlation similarly well (R2=0.97). Pressure loss and hydraulic power for the nanofluid were higher than for the base fluid over the range of conditions tested. The exergy destroyed in the heat exchange and fluid flow processes were between 8 and 13% higher for the nanofluid over the tested range of Reynolds numbers. The objective of the second study was to experimentally characterize and compare the performance of a nanofluid comprised of Al2O3 nanoparticles with 1, 2 and 3% volumetric concentrations in a 60% EG solution to that of 60% EG in a liquid to air heat exchanger. In this experiment, the heating system was operated in a higher temperature regime than in the first experiment. As in the first experiment, the test bed used in the experiment simulated a small air handling system typical of that used in HVAC applications. Entering conditions for the air and liquid were selected to emulate typical operating conditions of commercial air handling systems in sub arctic regions (such as Alaska). In the experiment the nanofluids generally did not perform as well as expected based on previous analytical work. The performance of the 1% nanofluid was generally equal to that of the base fluid considering identical entering conditions. However, the 2% and 3% nanofluids performance was considerably worse than that of the base fluid. The higher concentration nanofluids exhibited heat rates up to 14.6% lower than that of the 60%EG, and up to 44.3% lower heat transfer coefficient. The 1% Al2O3/60% EG exhibited 100% higher pressure drop across the coil than the base fluid considering equal heat output. In the computational portion of the research, the performance of a microchannel heat sink (MCHS), similar to those used to cool microprocessors filled with various nanofluids and the corresponding base fluid without nanoparticles are examined. The MCHS is modeled using a three- dimensional conjugate heat transfer and fluid dynamic finite-volume model over a range of conditions. The model incorporates a fixed heat flux of 1,000,000 W/m2 at the base of the solid domain. The thermophysical properties of the fluids are based on empirically obtained correlations, and vary with temperature. Nanofluids considered include 60% Ethylene Glycol/40% Water solutions with CuO, SiO2, and Al2O3 nanoparticles dispersed in volumetric concentrations ranging from 1 to 3%. The flow conditions analyzed are in the laminar range (50£Re£300), and consider multiple inlet temperatures. The analyses predict that when compared on an equal Reynolds number basis, the 60%EG/3% CuO nanofluid exhibits the highest heat transfer coefficient, and the largest reduction in average base temperature. At an inlet Reynolds number of 300, and an inlet temperature of 308K the nanofluid is predicted to have an average heat transfer coefficient that is 30% higher than that of the base fluid, while the average temperature on the base of the heat exchanger is 1K lower than that of the base fluid. In contrast, the inlet pressure required for these entering conditions is 192% higher than that for the base fluid, while the required hydraulic power to drive the flow is 366% higher than that of the base fluid. The enhanced heat transfer performance potential of nanofluids comes at the expense of generally higher pumping power consumption.

Computational and Experimental Evaluation of Nanofluids in Heating and Cooling Forced Convection Applications

Computational and Experimental Evaluation of Nanofluids in Heating and Cooling Forced Convection Applications PDF Author: Roy T. Strandberg
Publisher:
ISBN:
Category : Aluminum oxide
Languages : en
Pages : 324

Book Description
The purpose of the research was to examine the heat transfer and fluid dynamic performance of various nanofluids in heating and cooling applications using empirical and computational methods. Two experiments were performed to characterize and compare the performance of a Al2O3/60% ethylene glycol (60% EG) nanofluid to that of its base fluid. In the first experiment, the nanofluid was comprised of Al2O3 nanoparticles with 1% volumetric concentration in a 60% ethylene glycol/40% water (60% EG by mass) solution to that of 60%EG in a liquid to air heat exchanger. The test bed used in the experiment was built to simulate a small air handling system typical of that used in heating, ventilating and air conditioning (HVAC) applications. Previously established empirical correlations for thermophysical properties of fluids were used to determine the values of various parameters (e.g. Nusselt number, Reynolds number, and Prandtl number). The testing shows that the 1% Al2O3 nanofluid generates a marginally higher heat rate than the 60% EG under certain conditions. At Re=3,000, the nanofluid produced a heat rate that was 2% higher than that of the 60% EG. The empirically determined Nusselt number associated with the convection inside the coil tubing follows the behavior predicted by the Dittus-Boelter correlation quite well (R2=0.97), while the empirically determined Nusselt number for the 60% EG follows the Petukhov correlation similarly well (R2=0.97). Pressure loss and hydraulic power for the nanofluid were higher than for the base fluid over the range of conditions tested. The exergy destroyed in the heat exchange and fluid flow processes were between 8 and 13% higher for the nanofluid over the tested range of Reynolds numbers. The objective of the second study was to experimentally characterize and compare the performance of a nanofluid comprised of Al2O3 nanoparticles with 1, 2 and 3% volumetric concentrations in a 60% EG solution to that of 60% EG in a liquid to air heat exchanger. In this experiment, the heating system was operated in a higher temperature regime than in the first experiment. As in the first experiment, the test bed used in the experiment simulated a small air handling system typical of that used in HVAC applications. Entering conditions for the air and liquid were selected to emulate typical operating conditions of commercial air handling systems in sub arctic regions (such as Alaska). In the experiment the nanofluids generally did not perform as well as expected based on previous analytical work. The performance of the 1% nanofluid was generally equal to that of the base fluid considering identical entering conditions. However, the 2% and 3% nanofluids performance was considerably worse than that of the base fluid. The higher concentration nanofluids exhibited heat rates up to 14.6% lower than that of the 60%EG, and up to 44.3% lower heat transfer coefficient. The 1% Al2O3/60% EG exhibited 100% higher pressure drop across the coil than the base fluid considering equal heat output. In the computational portion of the research, the performance of a microchannel heat sink (MCHS), similar to those used to cool microprocessors filled with various nanofluids and the corresponding base fluid without nanoparticles are examined. The MCHS is modeled using a three- dimensional conjugate heat transfer and fluid dynamic finite-volume model over a range of conditions. The model incorporates a fixed heat flux of 1,000,000 W/m2 at the base of the solid domain. The thermophysical properties of the fluids are based on empirically obtained correlations, and vary with temperature. Nanofluids considered include 60% Ethylene Glycol/40% Water solutions with CuO, SiO2, and Al2O3 nanoparticles dispersed in volumetric concentrations ranging from 1 to 3%. The flow conditions analyzed are in the laminar range (50£Re£300), and consider multiple inlet temperatures. The analyses predict that when compared on an equal Reynolds number basis, the 60%EG/3% CuO nanofluid exhibits the highest heat transfer coefficient, and the largest reduction in average base temperature. At an inlet Reynolds number of 300, and an inlet temperature of 308K the nanofluid is predicted to have an average heat transfer coefficient that is 30% higher than that of the base fluid, while the average temperature on the base of the heat exchanger is 1K lower than that of the base fluid. In contrast, the inlet pressure required for these entering conditions is 192% higher than that for the base fluid, while the required hydraulic power to drive the flow is 366% higher than that of the base fluid. The enhanced heat transfer performance potential of nanofluids comes at the expense of generally higher pumping power consumption.

Electronics Cooling

Electronics Cooling PDF Author: S. M. Sohel Murshed
Publisher: BoD – Books on Demand
ISBN: 9535124056
Category : Computers
Languages : en
Pages : 184

Book Description
Featuring contributions from the renowned researchers and academicians in the field, this book covers key conventional and emerging cooling techniques and coolants for electronics cooling. It includes following thematic topics: - Cooling approaches and coolants - Boiling and phase change-based technologies - Heat pipes-based cooling - Microchannels cooling systems - Heat loop cooling technology - Nanofluids as coolants - Theoretical development for the junction temperature of package chips. This book is intended to be a reference source and guide to researchers, engineers, postgraduate students, and academicians in the fields of thermal management and cooling technologies as well as for people in the electronics and semiconductors industries.

Nanoparticle Heat Transfer and Fluid Flow

Nanoparticle Heat Transfer and Fluid Flow PDF Author: W. J. Minkowycz
Publisher: CRC Press
ISBN: 1439861927
Category : Science
Languages : en
Pages : 345

Book Description
Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.

Heat Transfer Enhancement with Nanofluids

Heat Transfer Enhancement with Nanofluids PDF Author: Vincenzo Bianco
Publisher: CRC Press
ISBN: 1482254026
Category : Science
Languages : en
Pages : 473

Book Description
Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from

Thermal Characteristics and Convection in Nanofluids

Thermal Characteristics and Convection in Nanofluids PDF Author: Aditya Kumar
Publisher: Springer Nature
ISBN: 981334248X
Category : Science
Languages : en
Pages : 230

Book Description
This book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.

Towards Nanofluids for Large-Scale Industrial Applications

Towards Nanofluids for Large-Scale Industrial Applications PDF Author: Bharat A. Bhanvase
Publisher: Elsevier
ISBN: 0443154848
Category : Technology & Engineering
Languages : en
Pages : 479

Book Description
Nanofluids for Large-Scale Industrial Applications examines the challenges and current progress towards large-scale industrial application of nanofluids, summarizing and bringing together varied current research strands and providing potential solutions pertaining to the scientific, economic, and social barriers that currently exist. Opening with an introduction to nanofluid synthesis, types, and properties, this book traverses the potential large-scale applications and commercialisation of nanofluids in industrial heating/cooling, solar energy systems, refrigeration systems, automotive systems, and various chemical processes and manufacturing systems. This book provides knowledge of a vast area of applications of nanofluids in industries. Thus, it also has potential to encourage and trigger the minds of researchers to discover more about nanofluids, investigate the gaps, overcome the challenges, and provide future directions for newer applications and develop nanofluids further. The book is written chiefly for graduate/postdoc level students and researchers/academics teaching or studying in chemical and thermal engineering and who are focused on heat transfer enhancement, thermal energy, nanofluids, and nano-enhanced energy systems such as solar thermal systems. Examines the challenges and current progress towards implementing large-scale industrial application of nanofluids Addresses current gaps in research, explores challenges and controversies as well as weaknesses and strengths versus alternative solutions Aims to bridge the gap between fundamental research and potential industrial-scale utilization in the future by providing pathways towards convenient and sustainable scale-up Meets a need to compile all current information and knowledge from studies and research related to large-scale nanofluids applications in one single resource

Nanofluids and Their Engineering Applications

Nanofluids and Their Engineering Applications PDF Author: K.R.V. Subramanian
Publisher: CRC Press
ISBN: 0429886993
Category : Science
Languages : en
Pages : 498

Book Description
Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment

Nanofluid in Heat Exchangers for Mechanical Systems

Nanofluid in Heat Exchangers for Mechanical Systems PDF Author: Zhixiong Li
Publisher: Elsevier
ISBN: 0128219246
Category : Technology & Engineering
Languages : en
Pages : 368

Book Description
Nanofluid in Heat Exchanges for Mechanical Systems: Numerical Simulation shows how the finite volume method is used to simulate various applications of heat exchanges. Heat transfer enhancement methods are introduced in detail, along with a hydrothermal analysis and second law approaches for heat exchanges. The melting process in heat exchanges is also covered, as is the influence of variable magnetic fields on the performance of heat exchange. This is an important reference source for materials scientists and mechanical engineers who are looking to understand the main ways that nanofluid flow is simulated and applied in industry. Provides detailed coverage of major models used in nanofluid analysis, including the finite volume method, governing equations for turbulent flow, and equations of nanofluid in presence of variable magnetic field Offers detailed coverage of swirling flow devices and melting processes Assesses which models should be applied in which situations

Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding

Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding PDF Author: Li, Changhe
Publisher: IGI Global
ISBN: 179981548X
Category : Technology & Engineering
Languages : en
Pages : 441

Book Description
In today’s modern world, the manufacturing industry is embracing an energy-efficient initiative and adopting green techniques. One aspect that has failed to adopt this scheme is flood grinding. Current flood grinding methods increase the treatment cost of grinding fluid and waste large quantities. In order to remain sustainable and efficient, in-depth research is necessary to study green grinding technologies that can ensure machining precision and surface quality of workpiece and reduce grinding fluid-induced environmental pollution. Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding provides emerging research exploring the theoretical and practical aspects of nanofluid lubrication and its application within grinding flow and green manufacturing. Featuring coverage on a broad range of topics such as airflow distribution, morphology analysis, and lubrication performance, this book is ideally designed for mechanical professionals, engineers, manufacturers, researchers, scientists, academicians, and students seeking current research on clean and low-carbon precision machining methods.

Hybrid Nanofluids for Convection Heat Transfer

Hybrid Nanofluids for Convection Heat Transfer PDF Author: Hafiz Muhammad Ali
Publisher: Academic Press
ISBN: 012819281X
Category : Technology & Engineering
Languages : en
Pages : 304

Book Description
Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids Reviews parameter selection and property measurement techniques for thermal performance calibration Explores the use of predictive mathematical techniques for experimental properties