Author: F. Herman
Publisher: Springer Science & Business Media
ISBN: 1468420135
Category : Science
Languages : en
Pages : 387
Book Description
During the past few years, there has been dramatic progress in theoretical and computational studies of large molecules and local ized states in solids. Various semi-empirical and first-principles methods well known in quantum chemistry have been applied with considerable success to ever larger and more complex molecules, including some of biological importance, as well as to selected solid state problems involving localized electronic states. In creasingly, solid state physicists are adopting a molecular point of view in attempting to understand the nature of electronic states associated with (a) isolated structural and chemical defects in solids; (b) surfaces and interfaces; and (c) bulk disordered solids, most notably amorphous semiconductors. Moreover, many concepts and methods already widely used in solid state physics are being adapted to molecular problems. These adaptations include pseudopotentials, statistical exchange approxi mations, muffin-tin model potentials, and multiple scattering and cellular methods. In addition, many new approaches are being de vised to deal with progressively more complex molecular and local ized electronic state problems.
Computational Methods for Large Molecules and Localized States in Solids
Author: F. Herman
Publisher: Springer Science & Business Media
ISBN: 1468420135
Category : Science
Languages : en
Pages : 387
Book Description
During the past few years, there has been dramatic progress in theoretical and computational studies of large molecules and local ized states in solids. Various semi-empirical and first-principles methods well known in quantum chemistry have been applied with considerable success to ever larger and more complex molecules, including some of biological importance, as well as to selected solid state problems involving localized electronic states. In creasingly, solid state physicists are adopting a molecular point of view in attempting to understand the nature of electronic states associated with (a) isolated structural and chemical defects in solids; (b) surfaces and interfaces; and (c) bulk disordered solids, most notably amorphous semiconductors. Moreover, many concepts and methods already widely used in solid state physics are being adapted to molecular problems. These adaptations include pseudopotentials, statistical exchange approxi mations, muffin-tin model potentials, and multiple scattering and cellular methods. In addition, many new approaches are being de vised to deal with progressively more complex molecular and local ized electronic state problems.
Publisher: Springer Science & Business Media
ISBN: 1468420135
Category : Science
Languages : en
Pages : 387
Book Description
During the past few years, there has been dramatic progress in theoretical and computational studies of large molecules and local ized states in solids. Various semi-empirical and first-principles methods well known in quantum chemistry have been applied with considerable success to ever larger and more complex molecules, including some of biological importance, as well as to selected solid state problems involving localized electronic states. In creasingly, solid state physicists are adopting a molecular point of view in attempting to understand the nature of electronic states associated with (a) isolated structural and chemical defects in solids; (b) surfaces and interfaces; and (c) bulk disordered solids, most notably amorphous semiconductors. Moreover, many concepts and methods already widely used in solid state physics are being adapted to molecular problems. These adaptations include pseudopotentials, statistical exchange approxi mations, muffin-tin model potentials, and multiple scattering and cellular methods. In addition, many new approaches are being de vised to deal with progressively more complex molecular and local ized electronic state problems.
Ab Initio Molecular Dynamics
Author: Dominik Marx
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Ab Initio Calculations
Author: Petr Carsky
Publisher: Springer Science & Business Media
ISBN: 3642931405
Category : Science
Languages : en
Pages : 256
Book Description
Until recently quantum chemical ab initio calculations were re stricted to atoms and very small molecules. As late as in 1960 Allen l and Karo stated : "Almost all of our ab initio experience derives from diatomic LCAO calculations ••• N and we have found in the litera ture "approximately eighty calculations, three-fourths of which are for diatomic molecules ••• There are approximately twenty ab initio calculations for molecules with more than two atoms, but there is a decided dividing line between the existing diatomic and polyatomic wave functions. Confidence in the satisfactory evaluation of the many -center two-electron integrals is very much less than for the diatom ic case". Among the noted twenty calculations, SiH was the largest 4 molecule treated. In most cases a minimal basis set was used and the many-center two-electron integrals were calculated in an approximate way. Under these circumstances the ab initio calculations could hard ly provide useful chemical information. It is therefore no wonder that the dominating role in the field of chemical applications was played by semiempirical and empirical methods. The situation changed essentially in the next decade. The problem of many-center integrals was solved, efficient and sophisticated computer programs were devel oped, basis sets suitable for a given type of problem were suggested, and, meanwhile, a considerable amount of results has been accumulated which serve as a valuable comparative material. The progress was of course inseparable from the development and availability of computers.
Publisher: Springer Science & Business Media
ISBN: 3642931405
Category : Science
Languages : en
Pages : 256
Book Description
Until recently quantum chemical ab initio calculations were re stricted to atoms and very small molecules. As late as in 1960 Allen l and Karo stated : "Almost all of our ab initio experience derives from diatomic LCAO calculations ••• N and we have found in the litera ture "approximately eighty calculations, three-fourths of which are for diatomic molecules ••• There are approximately twenty ab initio calculations for molecules with more than two atoms, but there is a decided dividing line between the existing diatomic and polyatomic wave functions. Confidence in the satisfactory evaluation of the many -center two-electron integrals is very much less than for the diatom ic case". Among the noted twenty calculations, SiH was the largest 4 molecule treated. In most cases a minimal basis set was used and the many-center two-electron integrals were calculated in an approximate way. Under these circumstances the ab initio calculations could hard ly provide useful chemical information. It is therefore no wonder that the dominating role in the field of chemical applications was played by semiempirical and empirical methods. The situation changed essentially in the next decade. The problem of many-center integrals was solved, efficient and sophisticated computer programs were devel oped, basis sets suitable for a given type of problem were suggested, and, meanwhile, a considerable amount of results has been accumulated which serve as a valuable comparative material. The progress was of course inseparable from the development and availability of computers.
Handbook of Computational Chemistry
Author: Jerzy Leszczynski
Publisher: Springer Science & Business Media
ISBN: 940070710X
Category : Computers
Languages : en
Pages : 1451
Book Description
This handbook is a guide to current methods of computational chemistry, explaining their limitations and advantages and providing examples of their applications. The first part outlines methods, the balance of volumes present numerous important applications.
Publisher: Springer Science & Business Media
ISBN: 940070710X
Category : Computers
Languages : en
Pages : 1451
Book Description
This handbook is a guide to current methods of computational chemistry, explaining their limitations and advantages and providing examples of their applications. The first part outlines methods, the balance of volumes present numerous important applications.
Encyclopedia of Supramolecular Chemistry - Two-Volume Set (Print)
Author: Jerry L. Atwood
Publisher: CRC Press
ISBN: 1482258161
Category : Science
Languages : en
Pages : 1745
Book Description
The two-volume Encyclopedia of Supramolecular Chemistry offers authoritative, centralized information on a rapidly expanding interdisciplinary field. User-friendly and high-quality articles parse the latest supramolecular advancements and methods in the areas of chemistry, biochemistry, biology, environmental and materials science and engineering, physics, computer science, and applied mathematics. Designed for specialists and students alike, the set covers the fundamentals of supramolecular chemistry and sets the standard for relevant future research.
Publisher: CRC Press
ISBN: 1482258161
Category : Science
Languages : en
Pages : 1745
Book Description
The two-volume Encyclopedia of Supramolecular Chemistry offers authoritative, centralized information on a rapidly expanding interdisciplinary field. User-friendly and high-quality articles parse the latest supramolecular advancements and methods in the areas of chemistry, biochemistry, biology, environmental and materials science and engineering, physics, computer science, and applied mathematics. Designed for specialists and students alike, the set covers the fundamentals of supramolecular chemistry and sets the standard for relevant future research.
Basic Principles and Techniques of Molecular Quantum Mechanics
Author: Ralph E. Christoffersen
Publisher: Springer Science & Business Media
ISBN: 1468463608
Category : Science
Languages : en
Pages : 698
Book Description
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermody namics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses. New York, New York CHARLES R. CANTOR Preface This book is not a traditional quantum chemistry textbook. Instead, it represents a concept that has evolved from teaching graduate courses in quantum chemistry over a number of years, and encountering students with diverse backgrounds.
Publisher: Springer Science & Business Media
ISBN: 1468463608
Category : Science
Languages : en
Pages : 698
Book Description
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermody namics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses. New York, New York CHARLES R. CANTOR Preface This book is not a traditional quantum chemistry textbook. Instead, it represents a concept that has evolved from teaching graduate courses in quantum chemistry over a number of years, and encountering students with diverse backgrounds.
Computational Chemistry
Author: Jerzy Leszczynski
Publisher: World Scientific
ISBN: 9789810225728
Category : Science
Languages : en
Pages : 288
Book Description
This book presents an overview of recent progress in computational techniques as well as examples of the application of existing computational methods in different areas of chemistry, physics, and biochemistry. Introductory chapters cover a broad range of fundamental topics, including: state-of-the-art basis set expansion methods for computing atomic and molecular electronic structures based on the use of relativistic quantum mechanics; the most recent developments in Hartree-Fock methods, particularly in techniques suited for very large systems; the current analysis of the solute-solvent free energy of interaction and the physical bases used to evaluate the electrostatic, cavitation, and dispersion terms; an introduction to the additive fuzzy electron density fragmentation scheme within various ab initio Hartree-Fock quantum-chemical computational schemes, which has provided the means for generating representative molecular fragment densities characteristic to their local environment within a molecule. This book also features a review of recent ab initio calculations on the structure and interactions of DNA bases, a chapter on computational approaches to the design of safer drugs and their molecular properties, and a systematic conceptual study on a route which allows one to stuff fullerenes.
Publisher: World Scientific
ISBN: 9789810225728
Category : Science
Languages : en
Pages : 288
Book Description
This book presents an overview of recent progress in computational techniques as well as examples of the application of existing computational methods in different areas of chemistry, physics, and biochemistry. Introductory chapters cover a broad range of fundamental topics, including: state-of-the-art basis set expansion methods for computing atomic and molecular electronic structures based on the use of relativistic quantum mechanics; the most recent developments in Hartree-Fock methods, particularly in techniques suited for very large systems; the current analysis of the solute-solvent free energy of interaction and the physical bases used to evaluate the electrostatic, cavitation, and dispersion terms; an introduction to the additive fuzzy electron density fragmentation scheme within various ab initio Hartree-Fock quantum-chemical computational schemes, which has provided the means for generating representative molecular fragment densities characteristic to their local environment within a molecule. This book also features a review of recent ab initio calculations on the structure and interactions of DNA bases, a chapter on computational approaches to the design of safer drugs and their molecular properties, and a systematic conceptual study on a route which allows one to stuff fullerenes.
Encyclopedia of Supramolecular Chemistry
Author: J. L. Atwood
Publisher: CRC Press
ISBN: 9780824747244
Category : Science
Languages : en
Pages : 1002
Book Description
Covers the fundamentals of supramolecular chemistry; supramolecular advancements and methods in the areas of chemistry, biochemistry, biology, environmental and materials science and engineering, physics, computer science, and applied mathematics.
Publisher: CRC Press
ISBN: 9780824747244
Category : Science
Languages : en
Pages : 1002
Book Description
Covers the fundamentals of supramolecular chemistry; supramolecular advancements and methods in the areas of chemistry, biochemistry, biology, environmental and materials science and engineering, physics, computer science, and applied mathematics.
Report
Semiempirical Methods of Electronic Structure Calculation
Author: Gerald Segal
Publisher: Springer Science & Business Media
ISBN: 1468425595
Category : Science
Languages : en
Pages : 319
Book Description
If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untouched due to the large numbers of electrons involved. Almost the entire class of molecules of real biological interest is simply out of the question. In general, the theoretician is reduced to model systems of variable appositeness in most of these fields. The fundamental problem, from a basic computational point of view, is that large molecules require large numbers of basis functions, whether Slater type orbitals or Gaussian functions suitably contracted, to provide even a modestly accurate description of the molecular electronic environment. This leads to the necessity of dealing with very large matrices and numbers of integrals within the Hartree-Fock approximation and quickly becomes both numerically difficult and uneconomic.
Publisher: Springer Science & Business Media
ISBN: 1468425595
Category : Science
Languages : en
Pages : 319
Book Description
If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untouched due to the large numbers of electrons involved. Almost the entire class of molecules of real biological interest is simply out of the question. In general, the theoretician is reduced to model systems of variable appositeness in most of these fields. The fundamental problem, from a basic computational point of view, is that large molecules require large numbers of basis functions, whether Slater type orbitals or Gaussian functions suitably contracted, to provide even a modestly accurate description of the molecular electronic environment. This leads to the necessity of dealing with very large matrices and numbers of integrals within the Hartree-Fock approximation and quickly becomes both numerically difficult and uneconomic.