Author: Daniel Barlet
Publisher: Springer Nature
ISBN: 3030311635
Category : Mathematics
Languages : en
Pages : 545
Book Description
The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.
Complex Analytic Cycles I
Author: Daniel Barlet
Publisher: Springer Nature
ISBN: 3030311635
Category : Mathematics
Languages : en
Pages : 545
Book Description
The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.
Publisher: Springer Nature
ISBN: 3030311635
Category : Mathematics
Languages : en
Pages : 545
Book Description
The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.
Complex Analytic Cycles
Author: Daniel Barlet
Publisher:
ISBN: 9783030311643
Category : Geometry, Algebraic
Languages : en
Pages : 545
Book Description
The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.
Publisher:
ISBN: 9783030311643
Category : Geometry, Algebraic
Languages : en
Pages : 545
Book Description
The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.
Le Cycles and Hypersurface Singularities
Author: David Massey
Publisher: Springer
ISBN: 3540455213
Category : Mathematics
Languages : en
Pages : 141
Book Description
This book describes and gives applications of an important new tool in the study of complex analytic hypersurface singularities: the Lê cycles of the hypersurface. The Lê cycles and their multiplicities - the Lê numbers - provide effectively calculable data which generalizes the Milnor number of an isolated singularity to the case of singularities of arbitrary dimension. The Lê numbers control many topological and geometric properties of such non-isolated hypersurface singularities. This book is intended for graduate students and researchers interested in complex analytic singularities.
Publisher: Springer
ISBN: 3540455213
Category : Mathematics
Languages : en
Pages : 141
Book Description
This book describes and gives applications of an important new tool in the study of complex analytic hypersurface singularities: the Lê cycles of the hypersurface. The Lê cycles and their multiplicities - the Lê numbers - provide effectively calculable data which generalizes the Milnor number of an isolated singularity to the case of singularities of arbitrary dimension. The Lê numbers control many topological and geometric properties of such non-isolated hypersurface singularities. This book is intended for graduate students and researchers interested in complex analytic singularities.
Michael Atiyah Collected Works
Author: Michael Atiyah
Publisher: Oxford University Press
ISBN: 9780198532767
Category : Biography & Autobiography
Languages : en
Pages : 876
Book Description
One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.
Publisher: Oxford University Press
ISBN: 9780198532767
Category : Biography & Autobiography
Languages : en
Pages : 876
Book Description
One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.
Numerical Control over Complex Analytic Singularities
Author: David B. Massey
Publisher: American Mathematical Soc.
ISBN: 0821832808
Category : Mathematics
Languages : en
Pages : 288
Book Description
Generalizes the Le cycles and numbers to the case of hyper surfaces inside arbitrary analytic spaces. This book defines the Le-Vogel cycles and numbers, and prove that the Le-Vogel numbers control Thom's $a_f$ condition. It describes the relationship between the Euler characteristic of the Milnor fibre and the Le-Vogel numbers.
Publisher: American Mathematical Soc.
ISBN: 0821832808
Category : Mathematics
Languages : en
Pages : 288
Book Description
Generalizes the Le cycles and numbers to the case of hyper surfaces inside arbitrary analytic spaces. This book defines the Le-Vogel cycles and numbers, and prove that the Le-Vogel numbers control Thom's $a_f$ condition. It describes the relationship between the Euler characteristic of the Milnor fibre and the Le-Vogel numbers.
Iterated Integrals and Cycles on Algebraic Manifolds
Author: Bruno Harris
Publisher: World Scientific
ISBN: 9812562575
Category : Mathematics
Languages : en
Pages : 121
Book Description
This subject has been of great interest both to topologists and tonumber theorists. The first part of this book describes some of thework of Kuo-Tsai Chen on iterated integrals and the fundamental groupof a manifold. The author attempts to make his exposition accessibleto beginning graduate students. He then proceeds to apply Chen''sconstructions to algebraic geometry, showing how this leads to someresults on algebraic cycles and the AbelOCoJacobihomomorphism. Finally, he presents a more general point of viewrelating Chen''s integrals to a generalization of the concept oflinking numbers, and ends up with a new invariant of homology classesin a projective algebraic manifold. The book is based on a coursegiven by the author at the Nankai Institute of Mathematics in the fallof 2001."
Publisher: World Scientific
ISBN: 9812562575
Category : Mathematics
Languages : en
Pages : 121
Book Description
This subject has been of great interest both to topologists and tonumber theorists. The first part of this book describes some of thework of Kuo-Tsai Chen on iterated integrals and the fundamental groupof a manifold. The author attempts to make his exposition accessibleto beginning graduate students. He then proceeds to apply Chen''sconstructions to algebraic geometry, showing how this leads to someresults on algebraic cycles and the AbelOCoJacobihomomorphism. Finally, he presents a more general point of viewrelating Chen''s integrals to a generalization of the concept oflinking numbers, and ends up with a new invariant of homology classesin a projective algebraic manifold. The book is based on a coursegiven by the author at the Nankai Institute of Mathematics in the fallof 2001."
The Collected Papers of Wei-Liang Chow
Author: Wei-Liang Chow
Publisher: World Scientific
ISBN: 9812380949
Category : Mathematics
Languages : en
Pages : 522
Book Description
This invaluable book contains the collected papers of Prof Wei-Liang Chow, an original and versatile mathematician of the 20th Century. Prof Chow's name has become a household word in mathematics because of the Chow ring, Chow coordinates, and Chow's theorem on analytic sets in projective spaces. The Chow ring has many advantages and is widely used in intersection theory of algebraic geometry. Chow coordinates have been a very versatile tool in many aspects of algebraic geometry. Chow's theorem ? that a compact analytic variety in a projective space is algebraic ? is justly famous; it shows the close analogy between algebraic geometry and algebraic number theory.About Professor Wei-Liang ChowThe long and distinguished career of Prof Wei-Liang Chow (1911-95) as a mathematician began in China with professorships at the National Central University in Nanking (1936-37) and the National Tung-Chi University in Shanghai (1946-47), and ultimately led him to the United States, where he joined the mathematics faculty of Johns Hopkins University in Baltimore, Maryland, first as an associate professor from 1948 to 1950, then as a full professor from 1950 until his retirement in 1977.In addition to serving as chairman of the mathematics department at Johns Hopkins from 1955 to 1965, he was Editor-in-Chief of the American Journal of Mathematics from 1953 to 1977.
Publisher: World Scientific
ISBN: 9812380949
Category : Mathematics
Languages : en
Pages : 522
Book Description
This invaluable book contains the collected papers of Prof Wei-Liang Chow, an original and versatile mathematician of the 20th Century. Prof Chow's name has become a household word in mathematics because of the Chow ring, Chow coordinates, and Chow's theorem on analytic sets in projective spaces. The Chow ring has many advantages and is widely used in intersection theory of algebraic geometry. Chow coordinates have been a very versatile tool in many aspects of algebraic geometry. Chow's theorem ? that a compact analytic variety in a projective space is algebraic ? is justly famous; it shows the close analogy between algebraic geometry and algebraic number theory.About Professor Wei-Liang ChowThe long and distinguished career of Prof Wei-Liang Chow (1911-95) as a mathematician began in China with professorships at the National Central University in Nanking (1936-37) and the National Tung-Chi University in Shanghai (1946-47), and ultimately led him to the United States, where he joined the mathematics faculty of Johns Hopkins University in Baltimore, Maryland, first as an associate professor from 1948 to 1950, then as a full professor from 1950 until his retirement in 1977.In addition to serving as chairman of the mathematics department at Johns Hopkins from 1955 to 1965, he was Editor-in-Chief of the American Journal of Mathematics from 1953 to 1977.
Complex Analytic Geometry: From The Localization Viewpoint
Author: Tatsuo Suwa
Publisher: World Scientific
ISBN: 9814704296
Category : Mathematics
Languages : en
Pages : 609
Book Description
Complex Analytic Geometry is a subject that could be termed, in short, as the study of the sets of common zeros of complex analytic functions. It has a long history and is closely related to many other fields of Mathematics and Sciences, where numerous applications have been found, including a recent one in the Sato hyperfunction theory.This book is concerned with, among others, local invariants that arise naturally in Complex Analytic Geometry and their relations with global invariants of the manifold or variety. The idea is to look at them as residues associated with the localization of some characteristic classes. Two approaches are taken for this — topological and differential geometric — and the combination of the two brings out further fruitful results. For this, on one hand, we present detailed description of the Alexander duality in combinatorial topology. On the other hand, we give a thorough presentation of the Čech-de Rham cohomology and integration theory on it. This viewpoint provides us with the way for clearer and more precise presentations of the central concepts as well as fundamental and important results that have been treated only globally so far. It also brings new perspectives into the subject and leads to further results and applications.The book starts off with basic material and continues by introducing characteristic classes via both the obstruction theory and the Chern-Weil theory, explaining the idea of localization of characteristic classes and presenting the aforementioned invariants and relations in a unified way from this perspective. Various related topics are also discussed. The expositions are carried out in a self-containing manner and includes recent developments. The profound consequences of this subject will make the book useful for students and researchers in fields as diverse as Algebraic Geometry, Complex Analytic Geometry, Differential Geometry, Topology, Singularity Theory, Complex Dynamical Systems, Algebraic Analysis and Mathematical Physics.
Publisher: World Scientific
ISBN: 9814704296
Category : Mathematics
Languages : en
Pages : 609
Book Description
Complex Analytic Geometry is a subject that could be termed, in short, as the study of the sets of common zeros of complex analytic functions. It has a long history and is closely related to many other fields of Mathematics and Sciences, where numerous applications have been found, including a recent one in the Sato hyperfunction theory.This book is concerned with, among others, local invariants that arise naturally in Complex Analytic Geometry and their relations with global invariants of the manifold or variety. The idea is to look at them as residues associated with the localization of some characteristic classes. Two approaches are taken for this — topological and differential geometric — and the combination of the two brings out further fruitful results. For this, on one hand, we present detailed description of the Alexander duality in combinatorial topology. On the other hand, we give a thorough presentation of the Čech-de Rham cohomology and integration theory on it. This viewpoint provides us with the way for clearer and more precise presentations of the central concepts as well as fundamental and important results that have been treated only globally so far. It also brings new perspectives into the subject and leads to further results and applications.The book starts off with basic material and continues by introducing characteristic classes via both the obstruction theory and the Chern-Weil theory, explaining the idea of localization of characteristic classes and presenting the aforementioned invariants and relations in a unified way from this perspective. Various related topics are also discussed. The expositions are carried out in a self-containing manner and includes recent developments. The profound consequences of this subject will make the book useful for students and researchers in fields as diverse as Algebraic Geometry, Complex Analytic Geometry, Differential Geometry, Topology, Singularity Theory, Complex Dynamical Systems, Algebraic Analysis and Mathematical Physics.
Selected Works of Phillip A. Griffiths with Commentary
Author: Phillip Griffiths
Publisher: American Mathematical Soc.
ISBN: 9780821820865
Category : Mathematics
Languages : en
Pages : 694
Book Description
Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.
Publisher: American Mathematical Soc.
ISBN: 9780821820865
Category : Mathematics
Languages : en
Pages : 694
Book Description
Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.
Lectures on Algebraic Cycles
Author: Spencer Bloch
Publisher: Cambridge University Press
ISBN: 1139487825
Category : Mathematics
Languages : en
Pages : 155
Book Description
Spencer Bloch's 1979 Duke lectures, a milestone in modern mathematics, have been out of print almost since their first publication in 1980, yet they have remained influential and are still the best place to learn the guiding philosophy of algebraic cycles and motives. This edition, now professionally typeset, has a new preface by the author giving his perspective on developments in the field over the past 30 years. The theory of algebraic cycles encompasses such central problems in mathematics as the Hodge conjecture and the Bloch–Kato conjecture on special values of zeta functions. The book begins with Mumford's example showing that the Chow group of zero-cycles on an algebraic variety can be infinite-dimensional, and explains how Hodge theory and algebraic K-theory give new insights into this and other phenomena.
Publisher: Cambridge University Press
ISBN: 1139487825
Category : Mathematics
Languages : en
Pages : 155
Book Description
Spencer Bloch's 1979 Duke lectures, a milestone in modern mathematics, have been out of print almost since their first publication in 1980, yet they have remained influential and are still the best place to learn the guiding philosophy of algebraic cycles and motives. This edition, now professionally typeset, has a new preface by the author giving his perspective on developments in the field over the past 30 years. The theory of algebraic cycles encompasses such central problems in mathematics as the Hodge conjecture and the Bloch–Kato conjecture on special values of zeta functions. The book begins with Mumford's example showing that the Chow group of zero-cycles on an algebraic variety can be infinite-dimensional, and explains how Hodge theory and algebraic K-theory give new insights into this and other phenomena.