Author: Y. Pichon
Publisher: Birkhäuser
ISBN: 3034872658
Category : Science
Languages : en
Pages : 445
Book Description
It is generally accepted that all living organisms present on earth derive from one single primordial cell born several billion years ago. One important step in the evolution occurred some 1. 5 billion years ago with the transition from small procaryote cells with relatively simple internal structures such as bacteria to larger and more compleX: eucaryotic cells such as those found in higher animals and plants. Large membrane proteins which enable the cells to communicate appeared early in evolution, and it is believed that the nerve membrane receptors and ionic channels which are observed today in both invertebrate and vertebrate species derive from a common ancestor. Basically, the three identified superfamilies, 1) ionotropic receptors (i. e. receptors containing an integral ionic channel), 2) metabotropic receptors (receptors coupled to G proteins) and 3) voltage-dependent ionic channels (Na+, K + and Ca2+ channels) were already well differentiated when vertebrates separated from invertebrate species. The large number of subtypes which are observed in each superfamily may be of more recent evolutionary origin. To understand how this happened, the best approach was to compare the sequences and the properties of the receptors and ionic channels in species sufficiently distant in the evolutionary tree. In the present volume, many of the best specialists in the field of comparative molecular neurobiology, several of them working on vertebrate and invertebrate species, have accepted to report their most recent findings.
Comparative Molecular Neurobiology
Author: Y. Pichon
Publisher: Birkhäuser
ISBN: 3034872658
Category : Science
Languages : en
Pages : 445
Book Description
It is generally accepted that all living organisms present on earth derive from one single primordial cell born several billion years ago. One important step in the evolution occurred some 1. 5 billion years ago with the transition from small procaryote cells with relatively simple internal structures such as bacteria to larger and more compleX: eucaryotic cells such as those found in higher animals and plants. Large membrane proteins which enable the cells to communicate appeared early in evolution, and it is believed that the nerve membrane receptors and ionic channels which are observed today in both invertebrate and vertebrate species derive from a common ancestor. Basically, the three identified superfamilies, 1) ionotropic receptors (i. e. receptors containing an integral ionic channel), 2) metabotropic receptors (receptors coupled to G proteins) and 3) voltage-dependent ionic channels (Na+, K + and Ca2+ channels) were already well differentiated when vertebrates separated from invertebrate species. The large number of subtypes which are observed in each superfamily may be of more recent evolutionary origin. To understand how this happened, the best approach was to compare the sequences and the properties of the receptors and ionic channels in species sufficiently distant in the evolutionary tree. In the present volume, many of the best specialists in the field of comparative molecular neurobiology, several of them working on vertebrate and invertebrate species, have accepted to report their most recent findings.
Publisher: Birkhäuser
ISBN: 3034872658
Category : Science
Languages : en
Pages : 445
Book Description
It is generally accepted that all living organisms present on earth derive from one single primordial cell born several billion years ago. One important step in the evolution occurred some 1. 5 billion years ago with the transition from small procaryote cells with relatively simple internal structures such as bacteria to larger and more compleX: eucaryotic cells such as those found in higher animals and plants. Large membrane proteins which enable the cells to communicate appeared early in evolution, and it is believed that the nerve membrane receptors and ionic channels which are observed today in both invertebrate and vertebrate species derive from a common ancestor. Basically, the three identified superfamilies, 1) ionotropic receptors (i. e. receptors containing an integral ionic channel), 2) metabotropic receptors (receptors coupled to G proteins) and 3) voltage-dependent ionic channels (Na+, K + and Ca2+ channels) were already well differentiated when vertebrates separated from invertebrate species. The large number of subtypes which are observed in each superfamily may be of more recent evolutionary origin. To understand how this happened, the best approach was to compare the sequences and the properties of the receptors and ionic channels in species sufficiently distant in the evolutionary tree. In the present volume, many of the best specialists in the field of comparative molecular neurobiology, several of them working on vertebrate and invertebrate species, have accepted to report their most recent findings.
Elements of Molecular Neurobiology
Author: C. U. M. Smith
Publisher: John Wiley & Sons
ISBN: 047085717X
Category : Medical
Languages : en
Pages : 630
Book Description
This edition of the popular text incorporates recent advances in neurobiology enabled by modern molecular biology techniques. Understanding how the brain works from a molecular level allows research to better understand behaviours, cognition, and neuropathologies. Since the appearance six years ago of the second edition, much more has been learned about the molecular biology of development and its relations with early evolution. This "evodevo" (as it has come to be known) framework also has a great deal of bearing on our understanding of neuropathologies as dysfunction of early onset genes can cause neurodegeneration in later life. Advances in our understanding of the genomes and proteomes of a number of organisms also greatly influence our understanding of neurobiology. * Well known and widely used as a text throughout the UK, good reviews from students and lecturers. * Good complement to Fundementals of Psychopharmacology by Brian Leonard. This book will be of particular interest to biomedical undergraduates undertaking a neuroscience unit, neuroscience postgraduates, physiologists, pharmacologists. It is also a useful basic reference for university libraries. Maurice Elphick, Queen Mary, University of London "I do like this book and it is the recommended textbook for my course in Molecular Neuroscience. The major strength of the book is the overall simplicity of the format both in terms of layout and diagrams."
Publisher: John Wiley & Sons
ISBN: 047085717X
Category : Medical
Languages : en
Pages : 630
Book Description
This edition of the popular text incorporates recent advances in neurobiology enabled by modern molecular biology techniques. Understanding how the brain works from a molecular level allows research to better understand behaviours, cognition, and neuropathologies. Since the appearance six years ago of the second edition, much more has been learned about the molecular biology of development and its relations with early evolution. This "evodevo" (as it has come to be known) framework also has a great deal of bearing on our understanding of neuropathologies as dysfunction of early onset genes can cause neurodegeneration in later life. Advances in our understanding of the genomes and proteomes of a number of organisms also greatly influence our understanding of neurobiology. * Well known and widely used as a text throughout the UK, good reviews from students and lecturers. * Good complement to Fundementals of Psychopharmacology by Brian Leonard. This book will be of particular interest to biomedical undergraduates undertaking a neuroscience unit, neuroscience postgraduates, physiologists, pharmacologists. It is also a useful basic reference for university libraries. Maurice Elphick, Queen Mary, University of London "I do like this book and it is the recommended textbook for my course in Molecular Neuroscience. The major strength of the book is the overall simplicity of the format both in terms of layout and diagrams."
Guide to Research Techniques in Neuroscience
Author: Matt Carter
Publisher: Academic Press
ISBN: 0323915612
Category : Medical
Languages : en
Pages : 416
Book Description
Modern neuroscience research is inherently multidisciplinary, with a wide variety of cutting edge new techniques to explore multiple levels of investigation. This Third Edition of Guide to Research Techniques in Neuroscience provides a comprehensive overview of classical and cutting edge methods including their utility, limitations, and how data are presented in the literature. This book can be used as an introduction to neuroscience techniques for anyone new to the field or as a reference for any neuroscientist while reading papers or attending talks. - Nearly 200 updated full-color illustrations to clearly convey the theory and practice of neuroscience methods - Expands on techniques from previous editions and covers many new techniques including in vivo calcium imaging, fiber photometry, RNA-Seq, brain spheroids, CRISPR-Cas9 genome editing, and more - Clear, straightforward explanations of each technique for anyone new to the field - A broad scope of methods, from noninvasive brain imaging in human subjects, to electrophysiology in animal models, to recombinant DNA technology in test tubes, to transfection of neurons in cell culture - Detailed recommendations on where to find protocols and other resources for specific techniques - "Walk-through" boxes that guide readers through experiments step-by-step
Publisher: Academic Press
ISBN: 0323915612
Category : Medical
Languages : en
Pages : 416
Book Description
Modern neuroscience research is inherently multidisciplinary, with a wide variety of cutting edge new techniques to explore multiple levels of investigation. This Third Edition of Guide to Research Techniques in Neuroscience provides a comprehensive overview of classical and cutting edge methods including their utility, limitations, and how data are presented in the literature. This book can be used as an introduction to neuroscience techniques for anyone new to the field or as a reference for any neuroscientist while reading papers or attending talks. - Nearly 200 updated full-color illustrations to clearly convey the theory and practice of neuroscience methods - Expands on techniques from previous editions and covers many new techniques including in vivo calcium imaging, fiber photometry, RNA-Seq, brain spheroids, CRISPR-Cas9 genome editing, and more - Clear, straightforward explanations of each technique for anyone new to the field - A broad scope of methods, from noninvasive brain imaging in human subjects, to electrophysiology in animal models, to recombinant DNA technology in test tubes, to transfection of neurons in cell culture - Detailed recommendations on where to find protocols and other resources for specific techniques - "Walk-through" boxes that guide readers through experiments step-by-step
Foundations of Neurobiology
Author: Fred Delcomyn
Publisher:
ISBN: 9780716726272
Category : Neurobiology
Languages : en
Pages : 648
Book Description
Publisher:
ISBN: 9780716726272
Category : Neurobiology
Languages : en
Pages : 648
Book Description
Principles of Neurobiology
Author: Liqun Luo
Publisher: Garland Science
ISBN: 1000096807
Category : Science
Languages : en
Pages : 761
Book Description
Principles of Neurobiology, Second Edition presents the major concepts of neuroscience with an emphasis on how we know what we know. The text is organized around a series of key experiments to illustrate how scientific progress is made and helps upper-level undergraduate and graduate students discover the relevant primary literature. Written by a single author in a clear and consistent writing style, each topic builds in complexity from electrophysiology to molecular genetics to systems level in a highly integrative approach. Students can fully engage with the content via thematically linked chapters and will be able to read the book in its entirety in a semester-long course. Principles of Neurobiology is accompanied by a rich package of online student and instructor resources including animations, figures in PowerPoint, and a Question Bank for adopting instructors.
Publisher: Garland Science
ISBN: 1000096807
Category : Science
Languages : en
Pages : 761
Book Description
Principles of Neurobiology, Second Edition presents the major concepts of neuroscience with an emphasis on how we know what we know. The text is organized around a series of key experiments to illustrate how scientific progress is made and helps upper-level undergraduate and graduate students discover the relevant primary literature. Written by a single author in a clear and consistent writing style, each topic builds in complexity from electrophysiology to molecular genetics to systems level in a highly integrative approach. Students can fully engage with the content via thematically linked chapters and will be able to read the book in its entirety in a semester-long course. Principles of Neurobiology is accompanied by a rich package of online student and instructor resources including animations, figures in PowerPoint, and a Question Bank for adopting instructors.
Neurobiology of Chemical Communication
Author: Carla Mucignat-Caretta
Publisher: CRC Press
ISBN: 1466553413
Category : Medical
Languages : en
Pages : 614
Book Description
Intraspecific communication involves the activation of chemoreceptors and subsequent activation of different central areas that coordinate the responses of the entire organism—ranging from behavioral modification to modulation of hormones release. Animals emit intraspecific chemical signals, often referred to as pheromones, to advertise their presence to members of the same species and to regulate interactions aimed at establishing and regulating social and reproductive bonds. In the last two decades, scientists have developed a greater understanding of the neural processing of these chemical signals. Neurobiology of Chemical Communication explores the role of the chemical senses in mediating intraspecific communication. Providing an up-to-date outline of the most recent advances in the field, it presents data from laboratory and wild species, ranging from invertebrates to vertebrates, from insects to humans. The book examines the structure, anatomy, electrophysiology, and molecular biology of pheromones. It discusses how chemical signals work on different mammalian and non-mammalian species and includes chapters on insects, Drosophila, honey bees, amphibians, mice, tigers, and cattle. It also explores the controversial topic of human pheromones. An essential reference for students and researchers in the field of pheromones, this is also an ideal resource for those working on behavioral phenotyping of animal models and persons interested in the biology/ecology of wild and domestic species.
Publisher: CRC Press
ISBN: 1466553413
Category : Medical
Languages : en
Pages : 614
Book Description
Intraspecific communication involves the activation of chemoreceptors and subsequent activation of different central areas that coordinate the responses of the entire organism—ranging from behavioral modification to modulation of hormones release. Animals emit intraspecific chemical signals, often referred to as pheromones, to advertise their presence to members of the same species and to regulate interactions aimed at establishing and regulating social and reproductive bonds. In the last two decades, scientists have developed a greater understanding of the neural processing of these chemical signals. Neurobiology of Chemical Communication explores the role of the chemical senses in mediating intraspecific communication. Providing an up-to-date outline of the most recent advances in the field, it presents data from laboratory and wild species, ranging from invertebrates to vertebrates, from insects to humans. The book examines the structure, anatomy, electrophysiology, and molecular biology of pheromones. It discusses how chemical signals work on different mammalian and non-mammalian species and includes chapters on insects, Drosophila, honey bees, amphibians, mice, tigers, and cattle. It also explores the controversial topic of human pheromones. An essential reference for students and researchers in the field of pheromones, this is also an ideal resource for those working on behavioral phenotyping of animal models and persons interested in the biology/ecology of wild and domestic species.
The Oxford Handbook of Invertebrate Neurobiology
Author: John H. Byrne
Publisher: Oxford University Press
ISBN: 0190456787
Category : Science
Languages : en
Pages : 1304
Book Description
Invertebrates have proven to be extremely useful model systems for gaining insights into the neural and molecular mechanisms of sensory processing, motor control and higher functions such as feeding behavior, learning and memory, navigation, and social behavior. A major factor in their enormous contributions to neuroscience is the relative simplicity of invertebrate nervous systems. In addition, some invertebrates, primarily the molluscs, have large cells, which allow analyses to take place at the level of individually identified neurons. Individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate model systems such as Drosophila and Caenorhabditis elegans offer tremendous advantages for obtaining insights into the neuronal bases of behavior through the application of genetic approaches. The Oxford Handbook of Invertebrate Neurobiology reviews the many neurobiological principles that have emerged from invertebrate analyses, such as motor pattern generation, mechanisms of synaptic transmission, and learning and memory. It also covers general features of the neurobiology of invertebrate circadian rhythms, development, and regeneration and reproduction. Some neurobiological phenomena are species-specific and diverse, especially in the domain of the neuronal control of locomotion and camouflage. Thus, separate chapters are provided on the control of swimming in annelids, crustaea and molluscs, locomotion in hexapods, and camouflage in cephalopods. Unique features of the handbook include chapters that review social behavior and intentionality in invertebrates. A chapter is devoted to summarizing past contributions of invertebrates to the understanding of nervous systems and identifying areas for future studies that will continue to advance that understanding.
Publisher: Oxford University Press
ISBN: 0190456787
Category : Science
Languages : en
Pages : 1304
Book Description
Invertebrates have proven to be extremely useful model systems for gaining insights into the neural and molecular mechanisms of sensory processing, motor control and higher functions such as feeding behavior, learning and memory, navigation, and social behavior. A major factor in their enormous contributions to neuroscience is the relative simplicity of invertebrate nervous systems. In addition, some invertebrates, primarily the molluscs, have large cells, which allow analyses to take place at the level of individually identified neurons. Individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate model systems such as Drosophila and Caenorhabditis elegans offer tremendous advantages for obtaining insights into the neuronal bases of behavior through the application of genetic approaches. The Oxford Handbook of Invertebrate Neurobiology reviews the many neurobiological principles that have emerged from invertebrate analyses, such as motor pattern generation, mechanisms of synaptic transmission, and learning and memory. It also covers general features of the neurobiology of invertebrate circadian rhythms, development, and regeneration and reproduction. Some neurobiological phenomena are species-specific and diverse, especially in the domain of the neuronal control of locomotion and camouflage. Thus, separate chapters are provided on the control of swimming in annelids, crustaea and molluscs, locomotion in hexapods, and camouflage in cephalopods. Unique features of the handbook include chapters that review social behavior and intentionality in invertebrates. A chapter is devoted to summarizing past contributions of invertebrates to the understanding of nervous systems and identifying areas for future studies that will continue to advance that understanding.
Neuroanatomy of the Mouse
Author: Hannsjörg Schröder
Publisher: Springer Nature
ISBN: 3030198987
Category : Medical
Languages : en
Pages : 353
Book Description
This textbook describes the basic neuroanatomy of the laboratory mouse. The reader will be guided through the anatomy of the mouse nervous system with the help of abundant microphotographs and schemata. Learning objectives and summaries of key facts at the beginning of each chapter provide the reader with an overview on the most important information. As transgenic mice are one of the most widely used paradigms when it comes to modeling human diseases, a basic understanding of the neuroanatomy of the mouse is of considerable value for all students and researchers in the neurosciences and pharmacy, but also in human and veterinary medicine. Accordingly, the authors have included, whenever possible, comparisons of the murine and the human nervous system. The book is intended as a guide for all those who are about to embark on the structural, histochemical and functional phenotyping of the mouse’s central nervous system. It can serve as a practical handbook for students and early researchers, and as a reference book for neuroscience lectures and laboratories.
Publisher: Springer Nature
ISBN: 3030198987
Category : Medical
Languages : en
Pages : 353
Book Description
This textbook describes the basic neuroanatomy of the laboratory mouse. The reader will be guided through the anatomy of the mouse nervous system with the help of abundant microphotographs and schemata. Learning objectives and summaries of key facts at the beginning of each chapter provide the reader with an overview on the most important information. As transgenic mice are one of the most widely used paradigms when it comes to modeling human diseases, a basic understanding of the neuroanatomy of the mouse is of considerable value for all students and researchers in the neurosciences and pharmacy, but also in human and veterinary medicine. Accordingly, the authors have included, whenever possible, comparisons of the murine and the human nervous system. The book is intended as a guide for all those who are about to embark on the structural, histochemical and functional phenotyping of the mouse’s central nervous system. It can serve as a practical handbook for students and early researchers, and as a reference book for neuroscience lectures and laboratories.
Arthropod Relationships
Author: Richard A. Fortey
Publisher: Springer Science & Business Media
ISBN: 9401149046
Category : Science
Languages : en
Pages : 377
Book Description
The arthropods contain more species than any other animal group, but the evolutionary pathways which led to their current diversity are still an issue of controversy. Arthropod Relationships provides an overview of our current understanding, responding to the new data arising from sequencing DNA, the discovery of new Cambrian fossils as direct evidence of early arthropod history, and developmental genetics. These new areas of research have stimulated a reconsideration of classical morphology and embryology. Arthropod Relationships is the first synthesis of the current debate to emerge: not since the volume edited by Gupta was published in 1979 has the arthropod phylogeny debate been, considered in this depth and breadth. Leaders in the various branches of arthropod biology have contributed to this volume. Chapters focus progressively from the general issues to the specific problems involving particular groups, and thence to a consideration of embryology and genetics. This wide range of disciplines is drawn on to approach an understanding of arthropod relationships, and to provide the most timely account of arthropod phylogeny. This book should be read by evolutionary biologists, palaeontologists, developmental geneticists and invertebrate zoologists. It will have a special interest for post-graduate students working in these fields.
Publisher: Springer Science & Business Media
ISBN: 9401149046
Category : Science
Languages : en
Pages : 377
Book Description
The arthropods contain more species than any other animal group, but the evolutionary pathways which led to their current diversity are still an issue of controversy. Arthropod Relationships provides an overview of our current understanding, responding to the new data arising from sequencing DNA, the discovery of new Cambrian fossils as direct evidence of early arthropod history, and developmental genetics. These new areas of research have stimulated a reconsideration of classical morphology and embryology. Arthropod Relationships is the first synthesis of the current debate to emerge: not since the volume edited by Gupta was published in 1979 has the arthropod phylogeny debate been, considered in this depth and breadth. Leaders in the various branches of arthropod biology have contributed to this volume. Chapters focus progressively from the general issues to the specific problems involving particular groups, and thence to a consideration of embryology and genetics. This wide range of disciplines is drawn on to approach an understanding of arthropod relationships, and to provide the most timely account of arthropod phylogeny. This book should be read by evolutionary biologists, palaeontologists, developmental geneticists and invertebrate zoologists. It will have a special interest for post-graduate students working in these fields.
Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research
Author: National Research Council
Publisher: National Academies Press
ISBN: 030916785X
Category : Science
Languages : en
Pages : 223
Book Description
Expanding on the National Research Council's Guide for the Care and Use of Laboratory Animals, this book deals specifically with mammals in neuroscience and behavioral research laboratories. It offers flexible guidelines for the care of these animals, and guidance on adapting these guidelines to various situations without hindering the research process. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research offers a more in-depth treatment of concerns specific to these disciplines than any previous guide on animal care and use. It treats on such important subjects as: The important role that the researcher and veterinarian play in developing animal protocols. Methods for assessing and ensuring an animal's well-being. General animal-care elements as they apply to neuroscience and behavioral research, and common animal welfare challenges this research can pose. The use of professional judgment and careful interpretation of regulations and guidelines to develop performance standards ensuring animal well-being and high-quality research. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research treats the development and evaluation of animal-use protocols as a decision-making process, not just a decision. To this end, it presents the most current, in-depth information about the best practices for animal care and use, as they pertain to the intricacies of neuroscience and behavioral research.
Publisher: National Academies Press
ISBN: 030916785X
Category : Science
Languages : en
Pages : 223
Book Description
Expanding on the National Research Council's Guide for the Care and Use of Laboratory Animals, this book deals specifically with mammals in neuroscience and behavioral research laboratories. It offers flexible guidelines for the care of these animals, and guidance on adapting these guidelines to various situations without hindering the research process. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research offers a more in-depth treatment of concerns specific to these disciplines than any previous guide on animal care and use. It treats on such important subjects as: The important role that the researcher and veterinarian play in developing animal protocols. Methods for assessing and ensuring an animal's well-being. General animal-care elements as they apply to neuroscience and behavioral research, and common animal welfare challenges this research can pose. The use of professional judgment and careful interpretation of regulations and guidelines to develop performance standards ensuring animal well-being and high-quality research. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research treats the development and evaluation of animal-use protocols as a decision-making process, not just a decision. To this end, it presents the most current, in-depth information about the best practices for animal care and use, as they pertain to the intricacies of neuroscience and behavioral research.