Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models PDF full book. Access full book title Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models by Muthupandian Cheralathan. Download full books in PDF and EPUB format.

Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models

Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models PDF Author: Muthupandian Cheralathan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
En aquesta tesi hem desenvolupat models compactes que incorporen un model de transport hidrodinàmic adaptat a multi-gate (principalment double-gate (DG) and surrounding-gate (SRG) MOSFETs a partir de models unificats de control de càrrega I del potencial de superfície, obtinguts de l'equació de Poisson. Tots aquests dispositius es modelitzen seguint un esquema semblant. El corrent i càrregues totals s'escriuen en funció de les densitats de càrrega mòbil per unitat d'àrea als extrems drenador i font del canal. Els efectes de canal curt i quàntics també s'inclouen en el model compacte desenvolupat. El model desenvolupat mostra un bon acord amb simulacions numèriques 2D i 3D en tots els règims d'operació. El model desenvolupat s'implementa i testeja al simulador de circuits SMASH per a l'anàlisi dels comportaments DC i transitori de circuits CMOS.

Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models

Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models PDF Author: Muthupandian Cheralathan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
En aquesta tesi hem desenvolupat models compactes que incorporen un model de transport hidrodinàmic adaptat a multi-gate (principalment double-gate (DG) and surrounding-gate (SRG) MOSFETs a partir de models unificats de control de càrrega I del potencial de superfície, obtinguts de l'equació de Poisson. Tots aquests dispositius es modelitzen seguint un esquema semblant. El corrent i càrregues totals s'escriuen en funció de les densitats de càrrega mòbil per unitat d'àrea als extrems drenador i font del canal. Els efectes de canal curt i quàntics també s'inclouen en el model compacte desenvolupat. El model desenvolupat mostra un bon acord amb simulacions numèriques 2D i 3D en tots els règims d'operació. El model desenvolupat s'implementa i testeja al simulador de circuits SMASH per a l'anàlisi dels comportaments DC i transitori de circuits CMOS.

Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models

Compact Modeling for Multi-gate Mosfets Using Advanced Transport Models PDF Author: Muthupandian Cheralathan
Publisher:
ISBN:
Category :
Languages : en
Pages : 149

Book Description
En aquesta tesi hem desenvolupat models compactes que incorporen un model de transport hidrodinàmic adaptat a multi-gate (principalment double-gate (DG) and surrounding-gate (SRG) MOSFETs a partir de models unificats de control de càrrega I del potencial de superfície, obtinguts de l'equació de Poisson. Tots aquests dispositius es modelitzen seguint un esquema semblant. El corrent i càrregues totals s'escriuen en funció de les densitats de càrrega mòbil per unitat d'àrea als extrems drenador i font del canal. Els efectes de canal curt i quàntics també s'inclouen en el model compacte desenvolupat. El model desenvolupat mostra un bon acord amb simulacions numèriques 2D i 3D en tots els règims d'operació. El model desenvolupat s'implementa i testeja al simulador de circuits SMASH per a l'anàlisi dels comportaments DC i transitori de circuits CMOS.

Compact Modeling

Compact Modeling PDF Author: Gennady Gildenblat
Publisher: Springer Science & Business Media
ISBN: 9048186145
Category : Technology & Engineering
Languages : en
Pages : 531

Book Description
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.

Advanced Compact Modeling of MOSFETs

Advanced Compact Modeling of MOSFETs PDF Author: Kanyu Cao
Publisher:
ISBN:
Category :
Languages : en
Pages : 370

Book Description


Compact Modeling of Multi-gate Transistors

Compact Modeling of Multi-gate Transistors PDF Author: Gajanan Dessai
Publisher:
ISBN:
Category : Field-effect transistors
Languages : en
Pages : 126

Book Description
Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as double-gate (DG) FinFETs and surrounding gate field-effect-transistors (SGFETs) have good electrostatic integrity and are an alternative to planar MOSFETs for below 20 nm technology nodes. Circuit design with these devices need compact models for SPICE simulation. In this work physics based compact models for the common-gate symmetric DG-FinFET, independent-gate asymmetric DG-FinFET, and SGFET are developed. Despite the complex device structure and boundary conditions for the Poisson-Boltzmann equation, the core structure of the DG-FinFET and SGFET models, are maintained similar to the surface potential based compact models for planar MOSFETs such as SP and PSP. TCAD simulations show differences between the transient behavior and the capacitance-voltage characteristics of bulk and SOI FinFETs if the gate-voltage swing includes the accumulation region. This effect can be captured by a compact model of FinFETs only if it includes the contribution of both types of carriers in the Poisson-Boltzmann equation. An accurate implicit input voltage equation valid in all regions of operation is proposed for common-gate symmetric DG-FinFETs with intrinsic or lightly doped bodies. A closed-form algorithm is developed for solving the new input voltage equation including ambipolar effects. The algorithm is verified for both the surface potential and its derivatives and includes a previously published analytical approximation for surface potential as a special case when ambipolar effects can be neglected. The symmetric linearization method for common-gate symmetric DG-FinFETs is developed in a form free of the charge-sheet approximation present in its original formulation for bulk MOSFETs. The accuracy of the proposed technique is verified by comparison with exact results. An alternative and computationally efficient description of the boundary between the trigonometric and hyperbolic solutions of the Poisson-Boltzmann equation for the independent-gate asymmetric DG-FinFET is developed in terms of the Lambert W function. Efficient numerical algorithm is proposed for solving the input voltage equation. Analytical expressions for terminal charges of an independent-gate asymmetric DG-FinFET are derived. The new charge model is C-infinity continuous, valid for weak as well as for strong inversion condition of both the channels and does not involve the charge-sheet approximation. This is accomplished by developing the symmetric linearization method in a form that does not require identical boundary conditions at the two Si-SiO2 interfaces and allows for volume inversion in the DG-FinFET. Verification of the model is performed with both numerical computations and 2D TCAD simulations under a wide range of biasing conditions. The model is implemented in a standard circuit simulator through Verilog-A code. Simulation examples for both digital and analog circuits verify good model convergence and demonstrate the capabilities of new circuit topologies that can be implemented using independent-gate asymmetric DG-FinFETs.

MOSFET Modeling for Circuit Analysis and Design

MOSFET Modeling for Circuit Analysis and Design PDF Author: Carlos Galup-Montoro
Publisher: World Scientific
ISBN: 9812568107
Category : Technology & Engineering
Languages : en
Pages : 445

Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.

Frontiers In Electronics: Advanced Modeling Of Nanoscale Electron Devices

Frontiers In Electronics: Advanced Modeling Of Nanoscale Electron Devices PDF Author: Benjamin Iniguez
Publisher: World Scientific
ISBN: 9814583200
Category : Technology & Engineering
Languages : en
Pages : 204

Book Description
This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear explanation of theapproaches used and the links with modeling techniques for either higher or lower levels.

FinFET/GAA Modeling for IC Simulation and Design

FinFET/GAA Modeling for IC Simulation and Design PDF Author: Yogesh Singh Chauhan
Publisher: Elsevier
ISBN: 0323958230
Category : Technology & Engineering
Languages : en
Pages : 326

Book Description
FinFET/GAA Modeling for IC Simulation and Design: Using the BSIM-CMG Standard, Second Edition is the first to book to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, thus providing a step-by-step approach for the efficient extraction of model parameters. With this book, users will learn Why you should use FinFET, The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG), Parameter extraction in BSIM-CMG FinFET circuit design and simulation, and more. - Authored by the lead inventor and developer of FinFET and developers of the BSIM-CMG standard model, providing an expert's insight into the specifications of the standard - A new edition of the original groundbreaking book on the industry-standard FinFET model—BSIM-CMGNew to This Edition - Includes a new chapter providing a comprehensive introduction to GAAFET, including motivations, device concepts, structure, benefits, and the industry standard GAAFET model - Covers the most recent developments in the BSIM-CMG model - Presents an updated RF modeling of FinFET using the BSIM-CMG model including parameter extraction - Includes a new chapter on cryogenic modeling

Nanoscale CMOS

Nanoscale CMOS PDF Author: Francis Balestra
Publisher: John Wiley & Sons
ISBN: 1118622472
Category : Technology & Engineering
Languages : en
Pages : 518

Book Description
This book provides a comprehensive review of the state-of-the-art in the development of new and innovative materials, and of advanced modeling and characterization methods for nanoscale CMOS devices. Leading global industry bodies including the International Technology Roadmap for Semiconductors (ITRS) have created a forecast of performance improvements that will be delivered in the foreseeable future – in the form of a roadmap that will lead to a substantial enlargement in the number of materials, technologies and device architectures used in CMOS devices. This book addresses the field of materials development, which has been the subject of a major research drive aimed at finding new ways to enhance the performance of semiconductor technologies. It covers three areas that will each have a dramatic impact on the development of future CMOS devices: global and local strained and alternative materials for high speed channels on bulk substrate and insulator; very low access resistance; and various high dielectric constant gate stacks for power scaling. The book also provides information on the most appropriate modeling and simulation methods for electrical properties of advanced MOSFETs, including ballistic transport, gate leakage, atomistic simulation, and compact models for single and multi-gate devices, nanowire and carbon-based FETs. Finally, the book presents an in-depth investigation of the main nanocharacterization techniques that can be used for an accurate determination of transport parameters, interface defects, channel strain as well as RF properties, including capacitance-conductance, improved split C-V, magnetoresistance, charge pumping, low frequency noise, and Raman spectroscopy.

BSIM-Bulk MOSFET Model for IC Design - Digital, Analog, RF and High-Voltage

BSIM-Bulk MOSFET Model for IC Design - Digital, Analog, RF and High-Voltage PDF Author: Chenming Hu
Publisher: Elsevier
ISBN: 0323856780
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
BSIM-Bulk MOSFET Model for IC Design - Digital, Analog, RF and High-Voltage provides in-depth knowledge of the internal operation of the model. The authors not only discuss the fundamental core of the model, but also provide details of the recent developments and new real-device effect models. In addition, the book covers the parameter extraction procedures, addressing geometrical scaling, temperatures, and more. There is also a dedicated chapter on extensive quality testing procedures and experimental results. This book discusses every aspect of the model in detail, and hence will be of significant use for the industry and academia. Those working in the semiconductor industry often run into a variety of problems like model non-convergence or non-physical simulation results. This is largely due to a limited understanding of the internal operations of the model as literature and technical manuals are insufficient. This also creates huge difficulty in developing their own IP models. Similarly, circuit designers and researcher across the globe need to know new features available to them so that the circuits can be more efficiently designed. - Reviews the latest advances in fabrication methods for metal chalcogenide-based biosensors - Discusses the parameters of biosensor devices to aid in materials selection - Provides readers with a look at the chemical and physical properties of reactive metals, noble metals, transition metals chalcogenides and their connection to biosensor device performance