Compact Binary Merger Simulations in Numerical Relativity PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Compact Binary Merger Simulations in Numerical Relativity PDF full book. Access full book title Compact Binary Merger Simulations in Numerical Relativity by Francesco Maria Fabbri. Download full books in PDF and EPUB format.

Compact Binary Merger Simulations in Numerical Relativity

Compact Binary Merger Simulations in Numerical Relativity PDF Author: Francesco Maria Fabbri
Publisher:
ISBN:
Category :
Languages : de
Pages : 0

Book Description
The era of Gravitational Waves Astronomy was launched after the success of the first observation run of the LIGO Scientific Collaboration and the VIRGO Collaboration. The large laser interferometers incredible achievement prompted the need of extensive studies in the field of compact astrophysical objects, such as Black Holes and Neutron Stars. Today, seven years after this event, the field of study underwent a notable expansion, corroborated by the detection of a signal coming from a Binary Neutron Star merger, together with its electro-magnetic counterpart, and, more recently, by the first detections of signals coming from mixed compact binaries, i.e. Black Hole- Neutron Star binaries. In this thesis work we span our attention across different aspects of compact objects mergers, including the inclusion of new physics into the already performing numerical relativity code BAM and the study of specific systems of compact objects. We first explore the treatment of neutrinos in case of Binary Neutron Star mergers and a tool to identify and further analyze regions containing trapped neutrinos, in the hot remnant of such mergers. Neutrinos, play in fact a key role into the rapid processes that characterize the formation of elements in the dynamical ejecta expelled during these catastrophic events. In the following we explore a variety of configurations of mixed compact binary systems. After the development of the new ID code Elliptica, and the steps taken to verify its accuracy, we make use of its capability to evolve sets of physical system with various properties. Exploring the space of parameters we study different spin configurations and magnitudes of single objects and their effects on the merger dynamics.

Compact Binary Merger Simulations in Numerical Relativity

Compact Binary Merger Simulations in Numerical Relativity PDF Author: Francesco Maria Fabbri
Publisher:
ISBN:
Category :
Languages : de
Pages : 0

Book Description
The era of Gravitational Waves Astronomy was launched after the success of the first observation run of the LIGO Scientific Collaboration and the VIRGO Collaboration. The large laser interferometers incredible achievement prompted the need of extensive studies in the field of compact astrophysical objects, such as Black Holes and Neutron Stars. Today, seven years after this event, the field of study underwent a notable expansion, corroborated by the detection of a signal coming from a Binary Neutron Star merger, together with its electro-magnetic counterpart, and, more recently, by the first detections of signals coming from mixed compact binaries, i.e. Black Hole- Neutron Star binaries. In this thesis work we span our attention across different aspects of compact objects mergers, including the inclusion of new physics into the already performing numerical relativity code BAM and the study of specific systems of compact objects. We first explore the treatment of neutrinos in case of Binary Neutron Star mergers and a tool to identify and further analyze regions containing trapped neutrinos, in the hot remnant of such mergers. Neutrinos, play in fact a key role into the rapid processes that characterize the formation of elements in the dynamical ejecta expelled during these catastrophic events. In the following we explore a variety of configurations of mixed compact binary systems. After the development of the new ID code Elliptica, and the steps taken to verify its accuracy, we make use of its capability to evolve sets of physical system with various properties. Exploring the space of parameters we study different spin configurations and magnitudes of single objects and their effects on the merger dynamics.

Remnants of compact binary mergers and next-generation numerical relativity codes

Remnants of compact binary mergers and next-generation numerical relativity codes PDF Author: Francesco Zappa
Publisher:
ISBN:
Category :
Languages : de
Pages : 0

Book Description
Numerical relativity (NR) simulations are crucial for studying the coalescence of compact binaries. Based on NR data, we produce a model for the mass and spin of the remnant black hole (BH) for the coalescence of black hole-neutron star systems, discussing its crucial role in gravitational wave (GW) modeling and in the parameter estimation of the two signals GW200105 and GW200115. In the context of binary neutron star merger simulations, we perform the first systematic study comparing results obtained with various neutrino treatments, the presence of turbulent viscosity and different grid resolutions. We find that the time of BH formation after merger is heavily affected by grid resolution and turbulent viscosity. An early BH formation limits matter ejection from the accretion disc, as the BH swallows a significant portion of it. Our results indicate that more reliable kilonova light curves are obtained only if the various ejecta components are present. Moreover, robust r-process nucleosynthesis yields require inclusion of both neutrino emission and reabsorption in simulations. Advanced neutrino schemes and turbulent viscosity in simulations resolved beyond current standards appear necessary for reliable astrophysical predictions. To carry out computationally demanding simulations of growing complexity, next-generation NR codes that can efficiently leverage the latest pre-exascale many-core and heterogeneous infrastructures are required. To this end we develop GR-Athena++, a new dynamical spacetime solver built on top of Athena++, that shows high-order convergence properties and excellent parallel scalability up to O(105) cores in full 3D binary black hole (BBH) merger simulations. Finally we present GR-AthenaK, the first performance-portable spacetime solver, obtained by refactoring GR-Athena++ with the Kokkos programming model. We demonstrate the correctness and convergence properties of GR-AthenaK with BBH runs on GPUs. GR-AthenaK shows a speedup ∼50 on one GPU compared to GR-Athena++ on a single CPU core.

The Black Hole-Neutron Star Binary Merger in Full General Relativity

The Black Hole-Neutron Star Binary Merger in Full General Relativity PDF Author: Koutarou Kyutoku
Publisher: Springer Science & Business Media
ISBN: 4431542019
Category : Science
Languages : en
Pages : 187

Book Description
This thesis presents a systematic study of the orbital evolution, gravitational wave radiation, and merger remnant of the black hole–neutron star binary merger in full general relativity for the first time. Numerical-relativity simulations are performed using an adaptive mesh refinement code, SimulAtor for Compact objects in Relativistic Astrophysics (SACRA), which adopts a wide variety of zero-temperature equations of state for the neutron star matter. Gravitational waves provide us with quantitative information on the neutron star compactness and equation of state via the cutoff frequency in the spectra, if tidal disruption of the neutron star occurs before the binary merges. The cutoff frequency will be observed by next-generation laser interferometric ground-based gravitational wave detectors, such as Advanced LIGO, Advanced VIRGO, and KAGRA. The author has also determined that the mass of remnant disks are sufficient for the remnant black hole accretion disk to become a progenitor of short-hard gamma ray bursts accompanied by tidal disruptions and suggests that overspinning black holes may not be formed after the merger of even an extremely spinning black hole and an irrotational neutron star.

Numerical Relativity

Numerical Relativity PDF Author: Masaru Shibata
Publisher: World Scientific
ISBN: 9814699748
Category : Science
Languages : en
Pages : 844

Book Description
This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

Universal Relations for Binary Neutron Star Mergers with Long-lived Remnants

Universal Relations for Binary Neutron Star Mergers with Long-lived Remnants PDF Author: Praveen Manoharan
Publisher: Springer Nature
ISBN: 3658368411
Category : Science
Languages : en
Pages : 77

Book Description
In the last 25 years, an extensive body of work has developed various equation of state independent - or (approximately) universal - relations that allow for the inference of neutron star parameters from gravitational wave observations. These works, however, have mostly been focused on singular neutron stars, while our observational efforts at the present, and in the near future, will be focused on binary neutron star (BNS) mergers. In light of these circumstances, the last five years have also given rise to more attempts at developing universal relations that relate BNS pre-merger neutron stars to stellar parameters of the post-merger object, mostly driven by numerical relativity simulations. In this thesis a first attempt at perturbatively deriving universal relations for binary neutron star mergers with long-lived neutron star remnants is presented. The author succeeds in confirming previous results relating pre-merger binary tidal deformabilities to the f-mode frequency of the post-merger object. Combining this result with recent advances of computing the f-mode frequency of fast rotating neutron stars, he also derives a combined relation that relates the pre-merger binary tidal deformability of a BNS to the effective compactness of a long-lived neutron star remnant. Finally, he also proposes a direct relation between these quantities with improved accuracy.

Numerical Relativity

Numerical Relativity PDF Author: Thomas W. Baumgarte
Publisher: Cambridge University Press
ISBN: 1139643177
Category : Science
Languages : en
Pages : 717

Book Description
Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.

Compact Object Binaries With Spinning Neutron Stars In Numerical Relativity

Compact Object Binaries With Spinning Neutron Stars In Numerical Relativity PDF Author: Nicholas Anthony Tacik
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The inspiral and merger of binary neutron stars (BNS) is one of the most promising potential sources of gravitational waves for ground-based detectors like Advanced LIGO. BNS mergers are also likely a source of counterpart electromagnetic radiation. It is important to perform simulations of BNS to better understand and model their gravitational wave emission as well as their electromagnetic emission. The parameter space of BNS binaries is quite large, and one aspect that has not been well studied in neutron star spin. In this thesis, we focus on investigating spinning neutron stars in compact object binaries. Using the SpEC code, developed by the SXS collaboration, we begin by presenting a new code to create initial data for binary neutron stars with arbitrary spins. We introduce a novel method of measuring neutron star spin, and show that it is accurate and robust. We evolve several spinning binary configurations and show that their properties agree remarkably well with Post-Newtonian predictions. We also show that we are able to control the eccentricity of the binaries to ~0.1%. Thereafter, we proceed to extend our code to black hole--neutron star (BHNS) binaries. We create many data sets across the BHNS parameter space, varying neutron star spin magnitude, spin direction, compactness, and black hole mass, spin and spin direction. We are able to create initial data sets with neutron star spins near the mass-shedding limit, and nearly extremal black hole spins. Finally, we investigate spurious gravitational radiation in binary black hole systems. We study its parameter space dependence, by introducing three diagnostics, investigating them as a function of black hole spin and black hole separation, and comparing two different methods of constructing initial data.

Numerical Relativity

Numerical Relativity PDF Author: Thomas W. Baumgarte
Publisher: Cambridge University Press
ISBN: 052151407X
Category : Science
Languages : en
Pages : 717

Book Description
Pedagogical introduction to numerical relativity for students and researchers entering the field, and interested scientists.

Physics of Relativistic Objects in Compact Binaries: from Birth to Coalescence

Physics of Relativistic Objects in Compact Binaries: from Birth to Coalescence PDF Author: Monica Colpi
Publisher: Springer Science & Business Media
ISBN: 1402092644
Category : Science
Languages : en
Pages : 386

Book Description
A very attractive feature of the theory of general relativity is that it is a perfectexampleofa“falsi?able”theory:notunableparameterispresentinthe theory and therefore even a single experiment incompatible with a prediction of the theory would immediately lead to its inevitable rejection, at least in the physical regime of application of the aforementioned experiment. This fact provides additional scienti?c value to one of the boldest and most fascinating achievements of the human intellect ever, and motivates a wealth of e?orts in designing and implementing tests aimed at the falsi?cation of the theory. The ?rst historical test on the theory has been the de?ection of light gr- ing the solar surface (Eddington 1919): the compatibility of the theory with this ?rst experiment together with its ability to explain the magnitude of the perihelion advance of Mercury contributed strongly to boost acceptance and worldwideknowledge.However,technologicallimitations preventedphysicists from setting up more constraining tests for several decades after the formu- tion of the theory. In fact, a relevant problem with experimental general r- ativity is that the predicted deviations from the Newtonian theory of gravity areverysmallwhentheexperimentsarecarriedoutinterrestriallaboratories.

Studying Compact Star Equation of States with General Relativistic Initial Data Approach

Studying Compact Star Equation of States with General Relativistic Initial Data Approach PDF Author: Enping Zhou
Publisher: Springer Nature
ISBN: 9811541515
Category : Science
Languages : en
Pages : 93

Book Description
This book focuses on the equation of state (EoS) of compact stars, particularly the intriguing possibility of the “quark star model.” The EoS of compact stars is the subject of ongoing debates among astrophysicists and particle physicists, due to the non-perturbative property of strong interaction at low energy scales. The book investigates the tidal deformability and maximum mass of rotating quark stars and triaxially rotating quark stars, and compares them with those of neutron stars to reveal significant differences. Lastly, by combining the latest observations of GW170817, the book suggests potential ways to distinguish between the neutron star and quark star models.