Combinatorics and Finite Fields PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Combinatorics and Finite Fields PDF full book. Access full book title Combinatorics and Finite Fields by Kai-Uwe Schmidt. Download full books in PDF and EPUB format.

Combinatorics and Finite Fields

Combinatorics and Finite Fields PDF Author: Kai-Uwe Schmidt
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110641968
Category : Mathematics
Languages : en
Pages : 459

Book Description
Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.

Combinatorics and Finite Fields

Combinatorics and Finite Fields PDF Author: Kai-Uwe Schmidt
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110641968
Category : Mathematics
Languages : en
Pages : 459

Book Description
Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.

Finite Fields

Finite Fields PDF Author: Rudolf Lidl
Publisher: Cambridge University Press
ISBN: 9780521392310
Category : Mathematics
Languages : en
Pages : 784

Book Description
This book is devoted entirely to the theory of finite fields.

Lectures on Finite Fields

Lectures on Finite Fields PDF Author: Xiang-dong Hou
Publisher: American Mathematical Soc.
ISBN: 1470442892
Category : Mathematics
Languages : en
Pages : 242

Book Description
The theory of finite fields encompasses algebra, combinatorics, and number theory and has furnished widespread applications in other areas of mathematics and computer science. This book is a collection of selected topics in the theory of finite fields and related areas. The topics include basic facts about finite fields, polynomials over finite fields, Gauss sums, algebraic number theory and cyclotomic fields, zeros of polynomials over finite fields, and classical groups over finite fields. The book is mostly self-contained, and the material covered is accessible to readers with the knowledge of graduate algebra; the only exception is a section on function fields. Each chapter is supplied with a set of exercises. The book can be adopted as a text for a second year graduate course or used as a reference by researchers.

Handbook of Finite Fields

Handbook of Finite Fields PDF Author: Gary L. Mullen
Publisher: CRC Press
ISBN: 1439873828
Category : Computers
Languages : en
Pages : 1048

Book Description
Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and

Combinatorics and Finite Fields

Combinatorics and Finite Fields PDF Author: Kai-Uwe Schmidt
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110642093
Category : Mathematics
Languages : en
Pages : 354

Book Description
Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.

Topics in Galois Fields

Topics in Galois Fields PDF Author: Dirk Hachenberger
Publisher: Springer Nature
ISBN: 3030608069
Category : Mathematics
Languages : en
Pages : 785

Book Description
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.

Finite Fields and Applications

Finite Fields and Applications PDF Author: Gary L. Mullen
Publisher: American Mathematical Soc.
ISBN: 0821844180
Category : Computers
Languages : en
Pages : 190

Book Description
Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.

Algebraic Combinatorics

Algebraic Combinatorics PDF Author: Richard P. Stanley
Publisher: Springer Science & Business Media
ISBN: 1461469988
Category : Mathematics
Languages : en
Pages : 226

Book Description
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

The Finite Field Distance Problem

The Finite Field Distance Problem PDF Author: David J. Covert
Publisher: American Mathematical Soc.
ISBN: 1470460319
Category : Education
Languages : en
Pages : 181

Book Description
Erdős asked how many distinct distances must there be in a set of n n points in the plane. Falconer asked a continuous analogue, essentially asking what is the minimal Hausdorff dimension required of a compact set in order to guarantee that the set of distinct distances has positive Lebesgue measure in R R. The finite field distance problem poses the analogous question in a vector space over a finite field. The problem is relatively new but remains tantalizingly out of reach. This book provides an accessible, exciting summary of known results. The tools used range over combinatorics, number theory, analysis, and algebra. The intended audience is graduate students and advanced undergraduates interested in investigating the unknown dimensions of the problem. Results available until now only in the research literature are clearly explained and beautifully motivated. A concluding chapter opens up connections to related topics in combinatorics and number theory: incidence theory, sum-product phenomena, Waring's problem, and the Kakeya conjecture.

Polynomial Methods in Combinatorics

Polynomial Methods in Combinatorics PDF Author: Larry Guth
Publisher: American Mathematical Soc.
ISBN: 1470428903
Category : Mathematics
Languages : en
Pages : 287

Book Description
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.