Colloidal Quantum Dots for Solar Energy Conversion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Colloidal Quantum Dots for Solar Energy Conversion PDF full book. Access full book title Colloidal Quantum Dots for Solar Energy Conversion by Mengxia Liu. Download full books in PDF and EPUB format.

Colloidal Quantum Dots for Solar Energy Conversion

Colloidal Quantum Dots for Solar Energy Conversion PDF Author: Mengxia Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Increasing global energy demand requires the development of clean energy sources that will help reduce the consumption of fossil fuels. Solar energy, the most abundant renewable source, is converted to electricity using photovoltaic devices. The photovoltaics market has witnessed rapid growth in the past decade, and today many photovoltaic strategies aim at low-cost, solution-processed manufacture. Colloidal quantum dots (CQDs), an emerging semiconductor material, have attracted attention in view of their spectral tunability. The bandgap of CQDs is readily tuned to harvest infrared solar energy. This could enable both full-spectrum devices and also tandem solar cells that can be integrated with wider-bandgap semiconductors. Unfortunately, a high density of surface-associated trap states, low carrier mobilities, and an inhomogeneous energy landscape have previously limited CQD photovoltaic performance. I introduce three strategies to address these problems. Through new materials processing approaches, I succeeded in increasing charge extraction, reducing bandtail states, and lowering the barrier to carrier hopping in CQD solids. The benefits from enhanced charge extraction were demonstrated in a double-sided junction architecture enabled by the engineering of an electron-accepting layer. This architecture resulted in an increase in the width of the carrier depletion region and a resultant decrease in recombination. I elucidated the effect of bandtail states on carrier transport and designed a solution-phase ligand-exchange method to create CQD inks that can be deposited as an active layer in a single step. The resulting CQD films exhibited a flattened energy landscape that increased the carrier diffusion length and contributed to solar cells having certified solar power conversion efficiencies of 11.3%. I then explored the translation of this strategy to small-bandgap infrared CQDs. Through management of surface ligands, I improved CQD passivation while reducing CQD fusion. I conclude with a new strategy for the design of a hybrid material system that combined CQDs with epitaxially-grown inorganic metal halide perovskites. The matrix-passivated CQD films showcased a two-fold increase in carrier mobility and superior thermal stability compared to pristine CQDs. This work provides promising pathways to achieve more fully the potential of CQD solids, and to showcase these advances in improved performance for CQD solar cells.

Colloidal Quantum Dots for Solar Energy Conversion

Colloidal Quantum Dots for Solar Energy Conversion PDF Author: Mengxia Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Increasing global energy demand requires the development of clean energy sources that will help reduce the consumption of fossil fuels. Solar energy, the most abundant renewable source, is converted to electricity using photovoltaic devices. The photovoltaics market has witnessed rapid growth in the past decade, and today many photovoltaic strategies aim at low-cost, solution-processed manufacture. Colloidal quantum dots (CQDs), an emerging semiconductor material, have attracted attention in view of their spectral tunability. The bandgap of CQDs is readily tuned to harvest infrared solar energy. This could enable both full-spectrum devices and also tandem solar cells that can be integrated with wider-bandgap semiconductors. Unfortunately, a high density of surface-associated trap states, low carrier mobilities, and an inhomogeneous energy landscape have previously limited CQD photovoltaic performance. I introduce three strategies to address these problems. Through new materials processing approaches, I succeeded in increasing charge extraction, reducing bandtail states, and lowering the barrier to carrier hopping in CQD solids. The benefits from enhanced charge extraction were demonstrated in a double-sided junction architecture enabled by the engineering of an electron-accepting layer. This architecture resulted in an increase in the width of the carrier depletion region and a resultant decrease in recombination. I elucidated the effect of bandtail states on carrier transport and designed a solution-phase ligand-exchange method to create CQD inks that can be deposited as an active layer in a single step. The resulting CQD films exhibited a flattened energy landscape that increased the carrier diffusion length and contributed to solar cells having certified solar power conversion efficiencies of 11.3%. I then explored the translation of this strategy to small-bandgap infrared CQDs. Through management of surface ligands, I improved CQD passivation while reducing CQD fusion. I conclude with a new strategy for the design of a hybrid material system that combined CQDs with epitaxially-grown inorganic metal halide perovskites. The matrix-passivated CQD films showcased a two-fold increase in carrier mobility and superior thermal stability compared to pristine CQDs. This work provides promising pathways to achieve more fully the potential of CQD solids, and to showcase these advances in improved performance for CQD solar cells.

Colloidal Quantum Dot Optoelectronics and Photovoltaics

Colloidal Quantum Dot Optoelectronics and Photovoltaics PDF Author: Gerasimos Konstantatos
Publisher: Cambridge University Press
ISBN: 0521198267
Category : Science
Languages : en
Pages : 329

Book Description
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Quantum Dot Solar Cells

Quantum Dot Solar Cells PDF Author: Jiang Wu
Publisher: Springer Science & Business Media
ISBN: 1461481481
Category : Science
Languages : en
Pages : 399

Book Description
The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of various quantum dot solar cell designs, including quantum dot intermediate band solar cells, hot electron quantum dot solar cells, quantum-dot sensitized solar cells, colloidal quantum dot solar cells, hybrid polymer-quantum dot solar cells, and MEG quantum dot solar cells. Both theoretical and experimental approaches are described. Quantum Dot Solar Cells helps to connect the fundamental laws of physics and the chemistry of materials with advances in device design and performance. The book can be recommended for a broad audience of chemists, electrical engineers, and materials scientists, and is suitable for use in courses on materials and device design for advanced and future optoelectronics.

Quantum Dot Photovoltaics

Quantum Dot Photovoltaics PDF Author: Nelson Bolívar
Publisher: Arcler Press
ISBN: 9781773610931
Category : Science
Languages : en
Pages : 0

Book Description
Quantum Dot Photovoltaics examines various aspects of next-gen photovoltaics to have a deeper understanding of colloidal quantum confined semi-conductor nanostructures. It includes the meaning of quantum dot photovoltaics and fabrication protocols required for such solar cells. Provide the reader with the insights into the development of solar energy conversion and the current status of colloidal quantum dots in prototype solar cells, so as to understand the scientific challenges faced during the conversion of solar energy.

Rational Design of Solar Cells for Efficient Solar Energy Conversion

Rational Design of Solar Cells for Efficient Solar Energy Conversion PDF Author: Alagarsamy Pandikumar
Publisher: John Wiley & Sons
ISBN: 1119437407
Category : Science
Languages : en
Pages : 396

Book Description
An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Nanocrystal Quantum Dots

Nanocrystal Quantum Dots PDF Author: Victor I. Klimov
Publisher: CRC Press
ISBN: 1420079271
Category : Technology & Engineering
Languages : en
Pages : 485

Book Description
A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.

Quantum Dot Heterojunction Solar Cells

Quantum Dot Heterojunction Solar Cells PDF Author: Rachelle Ihly
Publisher:
ISBN: 9781321207644
Category :
Languages : en
Pages : 137

Book Description
This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic study of the absorption properties of PbS quantum dot films exposed to air, heat, and UV illumination as a function of quantum dot size has been described. A method to improve the air-stability of films with atomic layer deposition of alumina is demonstrated. Encapsulation of quantum dot films using a protective layer of alumina results in quantum dot solids that maintain tuned absorption for 1000 hours. This thesis focuses on the use of atomic force microscopy and electrical variants thereof to study the physical and electrical characteristics of quantum dot arrays. These types of studies have broad implications in understanding charge transport mechanisms and solar cell device operation, with a particular emphasis on quantum dot transistors and solar cells. Imaging the channel potential of a PbSe quantum dot thin-film in a transistor showed a uniform distribution of charge coinciding with the transistor current voltage characteristics. In a second study, solar cell device operation of ZnO/PbS heterojunction solar cells was investigated by scanning active cross-sections with Kelvin probe microscopy as a function of applied bias, illumination and device architecture. This technique directly provides operating potential and electric field profiles to characterize drift and diffusion currents occurring in the device. SKPM established a field-free region occurring in the quantum dot layer, indicative of diffusion-limited transport. These results provide the path to optimization of future architectures that may employ drift-based transport in the quantum dot layer for enhanced charge extraction and power conversion efficiency.

Semiconductor Nanocrystals

Semiconductor Nanocrystals PDF Author: Alexander L. Efros
Publisher: Springer Science & Business Media
ISBN: 1475736770
Category : Technology & Engineering
Languages : en
Pages : 277

Book Description
A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.

Solar Cells

Solar Cells PDF Author: Leonid A. Kosyachenko
Publisher: BoD – Books on Demand
ISBN: 9535121847
Category : Technology & Engineering
Languages : en
Pages : 400

Book Description
This book contains chapters in which the problems of modern photovoltaics are considered. The majority of the chapters provide an overview of the results of research and development of different types of solar cells. Such chapters are completed by a justification for a new solar cell structure and technology. Of course, highly effective solar energy conversion is impossible without an in-depth examination of the solar cell components as physical materials. The relations between structural, thermodynamic, and optical properties of the physical material without addressing the band theory of solids are of both theoretical and practical interest. Requirements formulated for the material are also to be used for maximally efficient conversion of solar radiation into useful work.

Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578

Book Description
Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.