Author: C. Allday
Publisher: Cambridge University Press
ISBN: 0521350220
Category : Mathematics
Languages : en
Pages : 486
Book Description
This is an account of the theory of certain types of compact transformation groups, namely those that are susceptible to study using ordinary cohomology theory and rational homotopy theory, which in practice means the torus groups and elementary abelian p-groups. The efforts of many mathematicians have combined to bring a depth of understanding to this area. However to make it reasonably accessible to a wide audience, the authors have streamlined the presentation, referring the reader to the literature for purely technical results and working in a simplified setting where possible. In this way the reader with a relatively modest background in algebraic topology and homology theory can penetrate rather deeply into the subject, whilst the book at the same time makes a useful reference for the more specialised reader.
Cohomological Methods in Transformation Groups
Author: C. Allday
Publisher: Cambridge University Press
ISBN: 0521350220
Category : Mathematics
Languages : en
Pages : 486
Book Description
This is an account of the theory of certain types of compact transformation groups, namely those that are susceptible to study using ordinary cohomology theory and rational homotopy theory, which in practice means the torus groups and elementary abelian p-groups. The efforts of many mathematicians have combined to bring a depth of understanding to this area. However to make it reasonably accessible to a wide audience, the authors have streamlined the presentation, referring the reader to the literature for purely technical results and working in a simplified setting where possible. In this way the reader with a relatively modest background in algebraic topology and homology theory can penetrate rather deeply into the subject, whilst the book at the same time makes a useful reference for the more specialised reader.
Publisher: Cambridge University Press
ISBN: 0521350220
Category : Mathematics
Languages : en
Pages : 486
Book Description
This is an account of the theory of certain types of compact transformation groups, namely those that are susceptible to study using ordinary cohomology theory and rational homotopy theory, which in practice means the torus groups and elementary abelian p-groups. The efforts of many mathematicians have combined to bring a depth of understanding to this area. However to make it reasonably accessible to a wide audience, the authors have streamlined the presentation, referring the reader to the literature for purely technical results and working in a simplified setting where possible. In this way the reader with a relatively modest background in algebraic topology and homology theory can penetrate rather deeply into the subject, whilst the book at the same time makes a useful reference for the more specialised reader.
Geometric and Cohomological Methods in Group Theory
Author: Martin R. Bridson
Publisher: Cambridge University Press
ISBN: 052175724X
Category : Mathematics
Languages : en
Pages : 331
Book Description
An extended tour through a selection of the most important trends in modern geometric group theory.
Publisher: Cambridge University Press
ISBN: 052175724X
Category : Mathematics
Languages : en
Pages : 331
Book Description
An extended tour through a selection of the most important trends in modern geometric group theory.
Homological Group Theory
Author: Charles Terence Clegg Wall
Publisher: Cambridge University Press
ISBN: 0521227291
Category : Mathematics
Languages : en
Pages : 409
Book Description
Eminent mathematicians have presented papers on homological and combinatorial techniques in group theory. The lectures are aimed at presenting in a unified way new developments in the area.
Publisher: Cambridge University Press
ISBN: 0521227291
Category : Mathematics
Languages : en
Pages : 409
Book Description
Eminent mathematicians have presented papers on homological and combinatorial techniques in group theory. The lectures are aimed at presenting in a unified way new developments in the area.
Cohomological Methods in Group Theory
Author: Ararat Babakhanian
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
This book is intended for students interested in learning the use of cohomology and homology theory in solving problems in group theory. Although cohomology groups of a groups were formally defined in the early 1940s, these groups in low dimensions had been studied earlier as part of the general body of theory of groups. In the last three decades cohomology of groups has played a central role in various branches of mathematics. This book provides readers with the basic tools in cohomology of groups and to illustrate their use in obtaining group theoretic results.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
This book is intended for students interested in learning the use of cohomology and homology theory in solving problems in group theory. Although cohomology groups of a groups were formally defined in the early 1940s, these groups in low dimensions had been studied earlier as part of the general body of theory of groups. In the last three decades cohomology of groups has played a central role in various branches of mathematics. This book provides readers with the basic tools in cohomology of groups and to illustrate their use in obtaining group theoretic results.
Cohomology of Finite Groups
Author: Alejandro Adem
Publisher: Springer Science & Business Media
ISBN: 3662062828
Category : Mathematics
Languages : en
Pages : 333
Book Description
The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.
Publisher: Springer Science & Business Media
ISBN: 3662062828
Category : Mathematics
Languages : en
Pages : 333
Book Description
The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.
Geometric Group Theory
Author: Clara Löh
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390
Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390
Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometry and Cohomology in Group Theory
Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 052163556X
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Publisher: Cambridge University Press
ISBN: 052163556X
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Continuous Bounded Cohomology of Locally Compact Groups
Author: Nicolas Monod
Publisher: Springer
ISBN: 3540449620
Category : Mathematics
Languages : en
Pages : 219
Book Description
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
Publisher: Springer
ISBN: 3540449620
Category : Mathematics
Languages : en
Pages : 219
Book Description
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
Galois Cohomology and Class Field Theory
Author: David Harari
Publisher: Springer Nature
ISBN: 3030439011
Category : Mathematics
Languages : en
Pages : 336
Book Description
This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.
Publisher: Springer Nature
ISBN: 3030439011
Category : Mathematics
Languages : en
Pages : 336
Book Description
This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.
Geometric and Cohomological Group Theory
Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 131662322X
Category : Mathematics
Languages : en
Pages : 277
Book Description
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
Publisher: Cambridge University Press
ISBN: 131662322X
Category : Mathematics
Languages : en
Pages : 277
Book Description
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.