Channel and Source Coding for Non-Volatile Flash Memories PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Channel and Source Coding for Non-Volatile Flash Memories PDF full book. Access full book title Channel and Source Coding for Non-Volatile Flash Memories by Mohammed Rajab. Download full books in PDF and EPUB format.

Channel and Source Coding for Non-Volatile Flash Memories

Channel and Source Coding for Non-Volatile Flash Memories PDF Author: Mohammed Rajab
Publisher: Springer Nature
ISBN: 3658289821
Category : Computers
Languages : en
Pages : 153

Book Description
Mohammed Rajab proposes different technologies like the error correction coding (ECC), sources coding and offset calibration that aim to improve the reliability of the NAND flash memory with low implementation costs for industrial application. The author examines different ECC schemes based on concatenated codes like generalized concatenated codes (GCC) which are applicable for NAND flash memories by using the hard and soft input decoding. Furthermore, different data compression schemes are examined in order to reduce the write amplification effect and also to improve the error correct capability of the ECC by combining both schemes.

Channel and Source Coding for Non-Volatile Flash Memories

Channel and Source Coding for Non-Volatile Flash Memories PDF Author: Mohammed Rajab
Publisher: Springer Nature
ISBN: 3658289821
Category : Computers
Languages : en
Pages : 153

Book Description
Mohammed Rajab proposes different technologies like the error correction coding (ECC), sources coding and offset calibration that aim to improve the reliability of the NAND flash memory with low implementation costs for industrial application. The author examines different ECC schemes based on concatenated codes like generalized concatenated codes (GCC) which are applicable for NAND flash memories by using the hard and soft input decoding. Furthermore, different data compression schemes are examined in order to reduce the write amplification effect and also to improve the error correct capability of the ECC by combining both schemes.

Flash Memories

Flash Memories PDF Author: Paulo Cappelletti
Publisher: Springer
ISBN: 0792384873
Category : Technology & Engineering
Languages : en
Pages : 540

Book Description
A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5].

Inside NAND Flash Memories

Inside NAND Flash Memories PDF Author: Rino Micheloni
Publisher: Springer Science & Business Media
ISBN: 9048194318
Category : Technology & Engineering
Languages : en
Pages : 582

Book Description
Digital photography, MP3, digital video, etc. make extensive use of NAND-based Flash cards as storage media. To realize how much NAND Flash memories pervade every aspect of our life, just imagine how our recent habits would change if the NAND memories suddenly disappeared. To take a picture it would be necessary to find a film (as well as a traditional camera...), disks or even magnetic tapes would be used to record a video or to listen a song, and a cellular phone would return to be a simple mean of communication rather than a multimedia console. The development of NAND Flash memories will not be set down on the mere evolution of personal entertainment systems since a new killer application can trigger a further success: the replacement of Hard Disk Drives (HDDs) with Solid State Drives (SSDs). SSD is made up by a microcontroller and several NANDs. As NAND is the technology driver for IC circuits, Flash designers and technologists have to deal with a lot of challenges. Therefore, SSD (system) developers must understand Flash technology in order to exploit its benefits and countermeasure its weaknesses. Inside NAND Flash Memories is a comprehensive guide of the NAND world: from circuits design (analog and digital) to Flash reliability (including radiation effects), from testing issues to high-performance (DDR) interface, from error correction codes to NAND applications like Flash cards and SSDs.

Design Recipes for FPGAs: Using Verilog and VHDL

Design Recipes for FPGAs: Using Verilog and VHDL PDF Author: Peter Wilson
Publisher: Elsevier
ISBN: 0080548423
Category : Technology & Engineering
Languages : en
Pages : 312

Book Description
Design Recipes for FPGAs: Using Verilog and VHDL provides a rich toolbox of design techniques and templates to solve practical, every-day problems using FPGAs. Using a modular structure, the book gives 'easy-to-find' design techniques and templates at all levels, together with functional code. Written in an informal and 'easy-to-grasp' style, it goes beyond the principles of FPGA s and hardware description languages to actually demonstrate how specific designs can be synthesized, simulated and downloaded onto an FPGA. This book's 'easy-to-find' structure begins with a design application to demonstrate the key building blocks of FPGA design and how to connect them, enabling the experienced FPGA designer to quickly select the right design for their application, while providing the less experienced a 'road map' to solving their specific design problem. The book also provides advanced techniques to create 'real world' designs that fit the device required and which are fast and reliable to implement. This text will appeal to FPGA designers of all levels of experience. It is also an ideal resource for embedded system development engineers, hardware and software engineers, and undergraduates and postgraduates studying an embedded system which focuses on FPGA design. - A rich toolbox of practical FGPA design techniques at an engineer's finger tips - Easy-to-find structure that allows the engineer to quickly locate the information to solve their FGPA design problem, and obtain the level of detail and understanding needed

3D Flash Memories

3D Flash Memories PDF Author: Rino Micheloni
Publisher: Springer
ISBN: 9401775125
Category : Computers
Languages : en
Pages : 391

Book Description
This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.

Channel Codes

Channel Codes PDF Author: William Ryan
Publisher: Cambridge University Press
ISBN: 1139483013
Category : Technology & Engineering
Languages : en
Pages : 709

Book Description
Channel coding lies at the heart of digital communication and data storage, and this detailed introduction describes the core theory as well as decoding algorithms, implementation details, and performance analyses. In this book, Professors Ryan and Lin provide clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes. They also present detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, and product codes, providing a one-stop resource for both classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design. 250 varied and stimulating end-of-chapter problems are also included to test and enhance learning, making this an essential resource for students and practitioners alike.

Flash Memories

Flash Memories PDF Author: Detlev Richter
Publisher: Springer Science & Business Media
ISBN: 9400760825
Category : Technology & Engineering
Languages : en
Pages : 287

Book Description
The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined. Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based product development process. The Performance Indicator methodology is applied to demonstrate the importance of hidden memory parameters for a successful product and system development roadmap. Flash Memories offers an opportunity to enhance your understanding of product development key topics such as: · Reliability optimization of flash memories is all about threshold voltage margin understanding and definition; · Product performance parameter are analyzed in-depth in all aspects in relation to the threshold voltage operation window; · Technical characteristics are translated into quantitative performance indicators; · Performance indicators are applied to identify and quantify product and technology innovation within adjacent areas to fulfill the application requirements with an overall cost optimized solution; · Cost, density, performance and durability values are combined into a common factor – performance indicator - which fulfills the application requirements

Error Correction Codes for Non-Volatile Memories

Error Correction Codes for Non-Volatile Memories PDF Author: Rino Micheloni
Publisher: Springer Science & Business Media
ISBN: 1402083912
Category : Technology & Engineering
Languages : en
Pages : 338

Book Description
Nowadays it is hard to find an electronic device which does not use codes: for example, we listen to music via heavily encoded audio CD's and we watch movies via encoded DVD's. There is at least one area where the use of encoding/decoding is not so developed, yet: Flash non-volatile memories. Flash memory high-density, low power, cost effectiveness, and scalable design make it an ideal choice to fuel the explosion of multimedia products, like USB keys, MP3 players, digital cameras and solid-state disk. In ECC for Non-Volatile Memories the authors expose the basics of coding theory needed to understand the application to memories, as well as the relevant design topics, with reference to both NOR and NAND Flash architectures. A collection of software routines is also included for better understanding. The authors form a research group (now at Qimonda) which is the typical example of a fruitful collaboration between mathematicians and engineers.

Flash Memories

Flash Memories PDF Author: Paulo Cappelletti
Publisher: Springer Science & Business Media
ISBN: 1461550157
Category : Technology & Engineering
Languages : en
Pages : 544

Book Description
A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5].

Flash Memories

Flash Memories PDF Author: Igor Stievano
Publisher: BoD – Books on Demand
ISBN: 9533072725
Category : Computers
Languages : en
Pages : 278

Book Description
Flash memories and memory systems are key resources for the development of electronic products implementing converging technologies or exploiting solid-state memory disks. This book illustrates state-of-the-art technologies and research studies on Flash memories. Topics in modeling, design, programming, and materials for memories are covered along with real application examples.