CMOS Technology for IC Biosensor and Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download CMOS Technology for IC Biosensor and Applications PDF full book. Access full book title CMOS Technology for IC Biosensor and Applications by Dr. Abdullah Tashtoush. Download full books in PDF and EPUB format.

CMOS Technology for IC Biosensor and Applications

CMOS Technology for IC Biosensor and Applications PDF Author: Dr. Abdullah Tashtoush
Publisher: Xlibris Corporation
ISBN: 1483646025
Category : Medical
Languages : en
Pages : 292

Book Description
About the Book The book includes a variety of techniques that are conducting biosensors as transducers. The single die has all of the biosensors implemented within it, which leads to a new generation of multibiosensors named as multi-labs-on-a-single chip (MLoC). Biosensors are analytical devices that combine a biologically sensitive element with a physical or chemical transducer to detect the presence of specific compounds selectively and quantitatively. This book explores the feasibility of microelectronic techniques in a successful attempt to get huge cost savings in mass production, fast reacting, and disposable biosensors. The book is lied in six chapters and four appendices. These sensors were implemented using CMOSP35 technology on a single-chip that covers new techniques for detecting biomedical and biological samples at low concentration level based on CMOS/MEMS technology batch process. The methodology of the proposed multibiosensors that is named by multi-lab-on-a-chip (MLoC); lies on miniaturizing transducers, which is based on optical CMOS technology, charge based capacitance measurements (CBCM), electrochemical impedance spectroscopy (EIS) and CMOS microcoils incorporating with interdigitated microelectrode array (IDMA). The aforementioned approaches technically proved their capability and reliability overwhelmingly among the used conventional techniques for that reason these techniques have been proposed to create compact and portable biosensors for sensitive and rapid detection of biomedical and biological samples. While the four proposed biosensors have common objectives they differ in the method and analysis used, and postulates engaged by a discipline to achieve the objectives; the inquiry of the principles of investigation in a particular field.

CMOS Technology for IC Biosensor and Applications

CMOS Technology for IC Biosensor and Applications PDF Author: Dr. Abdullah Tashtoush
Publisher: Xlibris Corporation
ISBN: 1483646025
Category : Medical
Languages : en
Pages : 292

Book Description
About the Book The book includes a variety of techniques that are conducting biosensors as transducers. The single die has all of the biosensors implemented within it, which leads to a new generation of multibiosensors named as multi-labs-on-a-single chip (MLoC). Biosensors are analytical devices that combine a biologically sensitive element with a physical or chemical transducer to detect the presence of specific compounds selectively and quantitatively. This book explores the feasibility of microelectronic techniques in a successful attempt to get huge cost savings in mass production, fast reacting, and disposable biosensors. The book is lied in six chapters and four appendices. These sensors were implemented using CMOSP35 technology on a single-chip that covers new techniques for detecting biomedical and biological samples at low concentration level based on CMOS/MEMS technology batch process. The methodology of the proposed multibiosensors that is named by multi-lab-on-a-chip (MLoC); lies on miniaturizing transducers, which is based on optical CMOS technology, charge based capacitance measurements (CBCM), electrochemical impedance spectroscopy (EIS) and CMOS microcoils incorporating with interdigitated microelectrode array (IDMA). The aforementioned approaches technically proved their capability and reliability overwhelmingly among the used conventional techniques for that reason these techniques have been proposed to create compact and portable biosensors for sensitive and rapid detection of biomedical and biological samples. While the four proposed biosensors have common objectives they differ in the method and analysis used, and postulates engaged by a discipline to achieve the objectives; the inquiry of the principles of investigation in a particular field.

Cmos Technology for Ic Biosensor and Applications

Cmos Technology for Ic Biosensor and Applications PDF Author: Abdullah Tashtoush
Publisher: Xlibris Corporation
ISBN: 9781483646015
Category : Medical
Languages : en
Pages : 294

Book Description
About the Book The book includes a variety of techniques that are conducting biosensors as transducers. The single die has all of the biosensors implemented within it, which leads to a new generation of multibiosensors named as multi-labs-on-a-single chip (MLoC). Biosensors are analytical devices that combine a biologically sensitive element with a physical or chemical transducer to detect the presence of specific compounds selectively and quantitatively. This book explores the feasibility of microelectronic techniques in a successful attempt to get huge cost savings in mass production, fast reacting, and disposable biosensors. The book is lied in six chapters and four appendices. These sensors were implemented using CMOSP35 technology on a single-chip that covers new techniques for detecting biomedical and biological samples at low concentration level based on CMOS/MEMS technology batch process. The methodology of the proposed multibiosensors that is named by multi-lab-on-a-chip (MLoC); lies on miniaturizing transducers, which is based on optical CMOS technology, charge based capacitance measurements (CBCM), electrochemical impedance spectroscopy (EIS) and CMOS microcoils incorporating with interdigitated microelectrode array (IDMA). The aforementioned approaches technically proved their capability and reliability overwhelmingly among the used conventional techniques for that reason these techniques have been proposed to create compact and portable biosensors for sensitive and rapid detection of biomedical and biological samples. While the four proposed biosensors have common objectives they differ in the method and analysis used, and postulates engaged by a discipline to achieve the objectives; the inquiry of the principles of investigation in a particular field.

CMOS Capacitive Sensors for Lab-on-Chip Applications

CMOS Capacitive Sensors for Lab-on-Chip Applications PDF Author: Ebrahim Ghafar-Zadeh
Publisher: Springer Science & Business Media
ISBN: 9048137276
Category : Technology & Engineering
Languages : en
Pages : 154

Book Description
1.1 Overview of Lab-on-Chip Laboratory-on-Chip (LoC) is a multidisciplinary approach used for the miniaturization, integration and automation of biological assays or procedures in analytical chemistry [1–3]. Biology and chemistry are experimental sciences that are continuing to evolve and develop new protocols. Each protocol offers step-by-step laboratory instructions, lists of the necessary equipments and required biological and/or chemical substances [4–7]. A biological or chemical laboratory contains various pieces of equipment used for performing such protocols and, as shown in Fig. 1.1, the engineering aspect of LoC design is aiming to embed all these components in a single chip for single-purpose applications. 1.1.1 Main Objectives of LoC Systems Several clear advantages of this technology over conventional approaches, including portability, full automation, ease of operation, low sample consumption and fast assays time, make LoC suitable for many applications including. 1.1.1.1 Highly Throughput Screening To conduct an experiment, a researcher fills a well with the required biological or chemical analytes and keeps the sample in an incubator for some time to allowing the sample to react properly. Afterwards, any changes can be observed using a microscope. In order to quickly conduct millions of biochemical or pharmacolo- cal tests, the researchers will require an automated highly throughput screening (HTS) [8], comprised of a large array of wells, liquid handling devices (e.g., mic- channel, micropump and microvalves [9–11]), a fully controllable incubator and an integrated sensor array, along with the appropriate readout system.

CMOS Circuits for Biological Sensing and Processing

CMOS Circuits for Biological Sensing and Processing PDF Author: Srinjoy Mitra
Publisher: Springer
ISBN: 3319677233
Category : Technology & Engineering
Languages : en
Pages : 354

Book Description
This book provides the most comprehensive and consistent survey of the field of IC design for Biological Sensing and Processing. The authors describe a multitude of applications that require custom CMOS IC design and highlight the techniques in analog and mixed-signal circuit design that potentially can cross boundaries and benefit the very wide community of bio-medical engineers.

CMOS Biomicrosystems

CMOS Biomicrosystems PDF Author: Krzysztof Iniewski
Publisher: John Wiley & Sons
ISBN: 1118016483
Category : Technology & Engineering
Languages : en
Pages : 425

Book Description
The book will address the-state-of-the-art in integrated Bio-Microsystems that integrate microelectronics with fluidics, photonics, and mechanics. New exciting opportunities in emerging applications that will take system performance beyond offered by traditional CMOS based circuits are discussed in detail. The book is a must for anyone serious about microelectronics integration possibilities for future technologies. The book is written by top notch international experts in industry and academia. The intended audience is practicing engineers with electronics background that want to learn about integrated microsystems. The book will be also used as a recommended reading and supplementary material in graduate course curriculum.

CMOS Biotechnology

CMOS Biotechnology PDF Author: Hakho Lee
Publisher: Springer Science & Business Media
ISBN: 0387689133
Category : Science
Languages : en
Pages : 394

Book Description
Lately, there has been a growing interest in exploiting the benefits of the ICs for areas outside of the traditional application spaces. One noteable area is found in biology Bioanalytical instruments have been miniaturized on ICs to study various biophenomena or to actuate biosystems. These biolab-on-IC systems utilize the IC to facilitate faster, repeatable, and standardized biological experiments at low cost with a small volume of biological sample. The research activities in this field are expected to enjoy substantial growth in the foreseeable future. BioCMOS Technologies reviews these exciting recent efforts in joining CMOS technology with biology.

Integrated Chemical Microsensor Systems in CMOS Technology

Integrated Chemical Microsensor Systems in CMOS Technology PDF Author: Andreas Hierlemann
Publisher: Springer Science & Business Media
ISBN: 3540273727
Category : Technology & Engineering
Languages : en
Pages : 236

Book Description
Beginning with a comprehensive survey of existing semiconductor-based chemical microsensors and microsystems, this book proceeds to describe in detail CMOS technology-based chemical microsensor systems. The benefits of using CMOS technology for developing chemical microsensor systems and, in particular, monolithically integrated sensor systems comprising transducers and associated circuitry are laid out. Several successful realizations of such microsensor systems are presented. First, the fundamentals of the chemical sensing process itself will be elucidated, followed by a short description of microfabrication techniques and the CMOS substrate. Thereafter, a comprehensive overview of semiconductor-based and CMOS-based transducer structures and their applications is given. It is shown that CMOS-technology can be successfully used as platform technology to integrate microtransducers with the necessary driving and signal conditioning circuitry, and, in a next step, to develop monolithic multisensor arrays and fully developed microsystems with on-chip sensor control and standard interfaces. The book concludes with a brief outlook to future developments, such as interfacing cells with CMOS microelectronics.

Smart CMOS Image Sensors and Applications

Smart CMOS Image Sensors and Applications PDF Author: Jun Ohta
Publisher: CRC Press
ISBN: 1420019155
Category : Science
Languages : en
Pages : 272

Book Description
Because of their high noise immunity and low static power supply drain, complementary metal-oxide-semiconductor (CMOS) devices produce less heat than other forms of logic and allow a high density of logic functions on a chip. These beneficial characteristics have fueled the use of CMOS image sensors in consumer electronics, robot vision, biotechnology, and medicine. With the introduction of smart functions in CMOS image sensors, even more versatile applications are now possible. Exploring this popular technology, Smart CMOS Image Sensors and Applications focuses on the smart functions implemented in CMOS image sensors as well as the applications of these sensors. After discussing the history of smart CMOS image sensors, the book describes the fundamental elements of CMOS image sensors. It covers some optoelectronic device physics and introduces typical CMOS image sensor structures, such as an active pixel sensor (APS). Subsequent chapters elucidate the functions and materials of smart CMOS image sensors and present examples of smart imaging. The final chapter explores various applications of smart CMOS image sensors. Several appendices supply a range of information on constants, illuminance, MOSFET characteristics, and optical resolution. This book provides a firm foundation in existing smart CMOS image sensor technology and applications, preparing you for the next phase of smart CMOS image sensors.

High Dynamic Range CMOS-integrated Biosensors

High Dynamic Range CMOS-integrated Biosensors PDF Author: Ritu Raj Singh
Publisher:
ISBN:
Category :
Languages : en
Pages : 342

Book Description
Biosensors are extremely powerful analytical tools instrumental for detection and quantification of bio-molecules such as DNA, peptides and even metabolites. The recent decade has seen a surge in biosensing applications ranging from molecular diagnostics, environmental monitoring, basic life science research, forensics and biothreat monitoring. The existing biosensor systems of today, however, have several limitations. They are expensive, bulky in size, power hungry, hard to use and with access limited to core facilities. Among other disadvantages, these impediments discourage the availability of point-of-care testing and low cost in-vitro diagnostics (IVD) in locations such as developing and third world countries. The main bottleneck in the development of low-cost and compact biosensors is the effective and efficient integration of several complex components present inside a typical biosensor. These components are the sample preparation, biomolecular recognition, signal transduction and data analysis. With the recent advancements in very large scale integration (VLSI) and fabrication technologies, it is now possible to integrate several of these biosensing components into a small form factor. This thesis proposes leveraging the utilization of VLSI technology to develop a low-cost, miniature, portable, fast analysis, high throughput and low power consumption biosensor solution. Apart from the miniaturization benefits, employing VLSI technology facilitates low-cost, high yield and low process variation. We present complementary metal-oxide semiconductor (CMOS) integrated microsystem solutions for fluorescence, bioluminescence and electrochemical biosensing. Simulation models are provided for the microsystems and the specifications for the constituent components derived. A common problem in the transducer development of biosensors that we specifically focus on, is the presence of a large non-informative signal called the background signal. This background signal can be several orders of magnitudes higher than the signal of interest and it reduces the overall sensitivity of the biosensor. Existing transducer solutions rely on very high dynamic range, expensive and power hungry solutions to solve the problem of high background signal. To address the problem of overwhelming background signal, this thesis proposes an active background subtraction architecture merged with a Sigma-Delta modulator. The robust, versatile architecture can be conveniently employed for optical and electrochemical sensing. The proposed architecture attenuates the background signal very early in the signal chain, achieving high dynamic range while significantly relaxing the performance requirements of the subsequent circuit blocks in terms of power dissipation, area and bandwidth requirements. To validate the proposed solution, two CMOS IC prototypes were developed for optical and electrochemical sensing respectively. A 12x12 array of Sigma-Delta photodetector with in-pixel background subtraction was developed in 0.18 [mu]m standard CMOS technology. The pixel performance has been validated with over 140dB dynamic range and the ability of subtract the background subtraction current validated from 10nA to 10fA. Real time pyrosequencing experiment has also been performed utilizing the photodetector array. A 12x12 array of Sigma-Delta electrochemical sensor with in-pixel background subtraction was developed in 0.18 [mu]m standard CMOS technology. Capacitive charge redistribution circuit architecture for bipolar current measurements was employed. The circuit performance was validated over the wide input current range of 100nA to 1pA.

Bio/CMOS Interfaces and Co-Design

Bio/CMOS Interfaces and Co-Design PDF Author: Sandro Carrara
Publisher: Springer Nature
ISBN: 3031318323
Category : Technology & Engineering
Languages : en
Pages : 530

Book Description
This textbook demonstrates new paradigms for the interface between CMOS circuits and the biological world. A deep theoretical description of such an interface is defined and discussed, while various real applications are demonstrated by also discussing several analog CMOS circuits. Electrochemical techniques are proposed in detail to learn how to design integrated biosensors. Biological materials are described to provide devices selectivity. Nanoscale materials are discussed to provide device sensitivity. CMOS circuits are analyzed to provide real applications. Extensive examples with solutions are provided, as well as exercises at the end of each chapter. This book introduces students to the state-of-the-art in Bio/CMOS interfaces, describing leading-edge research in CMOS design and VLSI development for applications requiring intimate integration of biological molecules onto the chip. It provides multidisciplinary content ranging from biochemistry to CMOS design in order to address Bio/CMOS interface co-design in biosensing applications.