Author: Sanket Thodge
Publisher: Packt Publishing Ltd
ISBN: 1788838599
Category : Computers
Languages : en
Pages : 273
Book Description
Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.
Cloud Analytics with Google Cloud Platform
Author: Sanket Thodge
Publisher: Packt Publishing Ltd
ISBN: 1788838599
Category : Computers
Languages : en
Pages : 273
Book Description
Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1788838599
Category : Computers
Languages : en
Pages : 273
Book Description
Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.
Data Analytics with Google Cloud Platform
Author: Murari Ramuka
Publisher: BPB Publications
ISBN: 9389423635
Category : Computers
Languages : en
Pages : 287
Book Description
Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples
Publisher: BPB Publications
ISBN: 9389423635
Category : Computers
Languages : en
Pages : 287
Book Description
Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples
Cloud Analytics with Google Cloud Platform
Author: Sanket Thodge
Publisher: Packt Publishing Ltd
ISBN: 1788838599
Category : Computers
Languages : en
Pages : 273
Book Description
Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1788838599
Category : Computers
Languages : en
Pages : 273
Book Description
Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.
Data Analytics with Google Cloud Platform
Author: Murari Ramuka
Publisher: BPB Publications
ISBN: 9389423635
Category : Computers
Languages : en
Pages : 287
Book Description
Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples
Publisher: BPB Publications
ISBN: 9389423635
Category : Computers
Languages : en
Pages : 287
Book Description
Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples
Google Cloud Platform for Architects
Author: Vitthal Srinivasan
Publisher: Packt Publishing Ltd
ISBN: 1788833074
Category : Computers
Languages : en
Pages : 355
Book Description
Get acquainted with GCP and manage robust, highly available, and dynamic solutions to drive business objective Key Features Identify the strengths, weaknesses and ideal use-cases for individual services offered on the Google Cloud Platform Make intelligent choices about which cloud technology works best for your use-case Leverage Google Cloud Platform to analyze and optimize technical and business processes Book Description Using a public cloud platform was considered risky a decade ago, and unconventional even just a few years ago. Today, however, use of the public cloud is completely mainstream - the norm, rather than the exception. Several leading technology firms, including Google, have built sophisticated cloud platforms, and are locked in a fierce competition for market share. The main goal of this book is to enable you to get the best out of the GCP, and to use it with confidence and competence. You will learn why cloud architectures take the forms that they do, and this will help you become a skilled high-level cloud architect. You will also learn how individual cloud services are configured and used, so that you are never intimidated at having to build it yourself. You will also learn the right way and the right situation in which to use the important GCP services. By the end of this book, you will be able to make the most out of Google Cloud Platform design. What you will learn Set up GCP account and utilize GCP services using the cloud shell, web console, and client APIs Harness the power of App Engine, Compute Engine, Containers on the Kubernetes Engine, and Cloud Functions Pick the right managed service for your data needs, choosing intelligently between Datastore, BigTable, and BigQuery Migrate existing Hadoop, Spark, and Pig workloads with minimal disruption to your existing data infrastructure, by using Dataproc intelligently Derive insights about the health, performance, and availability of cloud-powered applications with the help of monitoring, logging, and diagnostic tools in Stackdriver Who this book is for If you are a Cloud architect who is responsible to design and manage robust cloud solutions with Google Cloud Platform, then this book is for you. System engineers and Enterprise architects will also find this book useful. A basic understanding of distributed applications would be helpful, although not strictly necessary. Some working experience on other public cloud platforms would help too.
Publisher: Packt Publishing Ltd
ISBN: 1788833074
Category : Computers
Languages : en
Pages : 355
Book Description
Get acquainted with GCP and manage robust, highly available, and dynamic solutions to drive business objective Key Features Identify the strengths, weaknesses and ideal use-cases for individual services offered on the Google Cloud Platform Make intelligent choices about which cloud technology works best for your use-case Leverage Google Cloud Platform to analyze and optimize technical and business processes Book Description Using a public cloud platform was considered risky a decade ago, and unconventional even just a few years ago. Today, however, use of the public cloud is completely mainstream - the norm, rather than the exception. Several leading technology firms, including Google, have built sophisticated cloud platforms, and are locked in a fierce competition for market share. The main goal of this book is to enable you to get the best out of the GCP, and to use it with confidence and competence. You will learn why cloud architectures take the forms that they do, and this will help you become a skilled high-level cloud architect. You will also learn how individual cloud services are configured and used, so that you are never intimidated at having to build it yourself. You will also learn the right way and the right situation in which to use the important GCP services. By the end of this book, you will be able to make the most out of Google Cloud Platform design. What you will learn Set up GCP account and utilize GCP services using the cloud shell, web console, and client APIs Harness the power of App Engine, Compute Engine, Containers on the Kubernetes Engine, and Cloud Functions Pick the right managed service for your data needs, choosing intelligently between Datastore, BigTable, and BigQuery Migrate existing Hadoop, Spark, and Pig workloads with minimal disruption to your existing data infrastructure, by using Dataproc intelligently Derive insights about the health, performance, and availability of cloud-powered applications with the help of monitoring, logging, and diagnostic tools in Stackdriver Who this book is for If you are a Cloud architect who is responsible to design and manage robust cloud solutions with Google Cloud Platform, then this book is for you. System engineers and Enterprise architects will also find this book useful. A basic understanding of distributed applications would be helpful, although not strictly necessary. Some working experience on other public cloud platforms would help too.
Google Cloud AI Services Quick Start Guide
Author: Arvind Ravulavaru
Publisher: Packt Publishing Ltd
ISBN: 1788996534
Category : Computers
Languages : en
Pages : 228
Book Description
Leverage the power of various Google Cloud AI Services by building a smart web application using MEAN Stack Key Features Start working with the Google Cloud Platform and the AI services it offers Build smart web applications by combining the power of Google Cloud AI services and the MEAN stack Build a web-based dashboard of smart applications that perform language processing, translation, and computer vision on the cloud Book Description Cognitive services are the new way of adding intelligence to applications and services. Now we can use Artificial Intelligence as a service that can be consumed by any application or other service, to add smartness and make the end result more practical and useful. Google Cloud AI enables you to consume Artificial Intelligence within your applications, from a REST API. Text, video and speech analysis are among the powerful machine learning features that can be used. This book is the easiest way to get started with the Google Cloud AI services suite and open up the world of smarter applications. This book will help you build a Smart Exchange, a forum application that will let you upload videos, images and perform text to speech conversions and translation services. You will use the power of Google Cloud AI Services to make our simple forum application smart by validating the images, videos, and text provided by users to Google Cloud AI Services and make sure the content which is uploaded follows the forum standards, without a human curator involvement. You will learn how to work with the Vision API, Video Intelligence API, Speech Recognition API, Cloud Language Process, and Cloud Translation API services to make your application smarter. By the end of this book, you will have a strong understanding of working with Google Cloud AI Services, and be well on the way to building smarter applications. What you will learn Understand Google Cloud Platform and its Cloud AI services Explore the Google ML Services Work with an Angular 5 MEAN stack application Integrate Vision API, Video Intelligence API for computer vision Be ready for conversational experiences with the Speech Recognition API, Cloud Language Process and Cloud Translation API services Build a smart web application that uses the power of Google Cloud AI services to make apps smarter Who this book is for This book is ideal for data professionals and web developers who want to use the power of Google Cloud AI services in their projects, without the going through the pain of mastering machine learning for images, videos and text. Some familiarity with the Google Cloud Platform will be helpful.
Publisher: Packt Publishing Ltd
ISBN: 1788996534
Category : Computers
Languages : en
Pages : 228
Book Description
Leverage the power of various Google Cloud AI Services by building a smart web application using MEAN Stack Key Features Start working with the Google Cloud Platform and the AI services it offers Build smart web applications by combining the power of Google Cloud AI services and the MEAN stack Build a web-based dashboard of smart applications that perform language processing, translation, and computer vision on the cloud Book Description Cognitive services are the new way of adding intelligence to applications and services. Now we can use Artificial Intelligence as a service that can be consumed by any application or other service, to add smartness and make the end result more practical and useful. Google Cloud AI enables you to consume Artificial Intelligence within your applications, from a REST API. Text, video and speech analysis are among the powerful machine learning features that can be used. This book is the easiest way to get started with the Google Cloud AI services suite and open up the world of smarter applications. This book will help you build a Smart Exchange, a forum application that will let you upload videos, images and perform text to speech conversions and translation services. You will use the power of Google Cloud AI Services to make our simple forum application smart by validating the images, videos, and text provided by users to Google Cloud AI Services and make sure the content which is uploaded follows the forum standards, without a human curator involvement. You will learn how to work with the Vision API, Video Intelligence API, Speech Recognition API, Cloud Language Process, and Cloud Translation API services to make your application smarter. By the end of this book, you will have a strong understanding of working with Google Cloud AI Services, and be well on the way to building smarter applications. What you will learn Understand Google Cloud Platform and its Cloud AI services Explore the Google ML Services Work with an Angular 5 MEAN stack application Integrate Vision API, Video Intelligence API for computer vision Be ready for conversational experiences with the Speech Recognition API, Cloud Language Process and Cloud Translation API services Build a smart web application that uses the power of Google Cloud AI services to make apps smarter Who this book is for This book is ideal for data professionals and web developers who want to use the power of Google Cloud AI services in their projects, without the going through the pain of mastering machine learning for images, videos and text. Some familiarity with the Google Cloud Platform will be helpful.
Building Your Next Big Thing with Google Cloud Platform
Author: Jose Ugia Gonzalez
Publisher: Apress
ISBN: 1484210042
Category : Computers
Languages : en
Pages : 377
Book Description
Building Your Next Big Thing with Google Cloud Platform shows you how to take advantage of the Google Cloud Platform technologies to build all kinds of cloud-hosted software and services for both public and private consumption. Whether you need a simple virtual server to run your legacy application or you need to architect a sophisticated high-traffic web application, Cloud Platform provides all the tools and products required to create innovative applications and a robust infrastructure to manage them. Google is known for the scalability, reliability, and efficiency of its various online products, from Google Search to Gmail. And, the results are impressive. Google Search, for example, returns results literally within fractions of second. How is this possible? Google custom-builds both hardware and software, including servers, switches, networks, data centers, the operating system’s stack, application frameworks, applications, and APIs. Have you ever imagined what you could build if you were able to tap the same infrastructure that Google uses to create and manage its products? Now you can! Building Your Next Big Thing with Google Cloud Platform shows you how to take advantage of the Google Cloud Platform technologies to build all kinds of cloud-hosted software and services for both public and private consumption. Whether you need a simple virtual server to run your legacy application or you need to architect a sophisticated high-traffic web application, Cloud Platform provides all the tools and products required to create innovative applications and a robust infrastructure to manage them. Using this book as your compass, you can navigate your way through the Google Cloud Platform and turn your ideas into reality. The authors, both Google Developer Experts in Google Cloud Platform, systematically introduce various Cloud Platform products one at a time and discuss their strengths and scenarios where they are a suitable fit. But rather than a manual-like "tell all" approach, the emphasis is on how to Get Things Done so that you get up to speed with Google Cloud Platform as quickly as possible. You will learn how to use the following technologies, among others: Google Compute Engine Google App Engine Google Container Engine Google App Engine Managed VMs Google Cloud SQL Google Cloud Storage Google Cloud Datastore Google BigQuery Google Cloud Dataflow Google Cloud DNS Google Cloud Pub/Sub Google Cloud Endpoints Google Cloud Deployment Manager Author on Google Cloud Platform Google APIs and Translate API Using real-world examples, the authors first walk you through the basics of cloud computing, cloud terminologies and public cloud services. Then they dive right into Google Cloud Platform and how you can use it to tackle your challenges, build new products, analyze big data, and much more. Whether you’re an independent developer, startup, or Fortune 500 company, you have never had easier to access to world-class production, product development, and infrastructure tools. Google Cloud Platform is your ticket to leveraging your skills and knowledge into making reliable, scalable, and efficient products—just like how Google builds its own products.
Publisher: Apress
ISBN: 1484210042
Category : Computers
Languages : en
Pages : 377
Book Description
Building Your Next Big Thing with Google Cloud Platform shows you how to take advantage of the Google Cloud Platform technologies to build all kinds of cloud-hosted software and services for both public and private consumption. Whether you need a simple virtual server to run your legacy application or you need to architect a sophisticated high-traffic web application, Cloud Platform provides all the tools and products required to create innovative applications and a robust infrastructure to manage them. Google is known for the scalability, reliability, and efficiency of its various online products, from Google Search to Gmail. And, the results are impressive. Google Search, for example, returns results literally within fractions of second. How is this possible? Google custom-builds both hardware and software, including servers, switches, networks, data centers, the operating system’s stack, application frameworks, applications, and APIs. Have you ever imagined what you could build if you were able to tap the same infrastructure that Google uses to create and manage its products? Now you can! Building Your Next Big Thing with Google Cloud Platform shows you how to take advantage of the Google Cloud Platform technologies to build all kinds of cloud-hosted software and services for both public and private consumption. Whether you need a simple virtual server to run your legacy application or you need to architect a sophisticated high-traffic web application, Cloud Platform provides all the tools and products required to create innovative applications and a robust infrastructure to manage them. Using this book as your compass, you can navigate your way through the Google Cloud Platform and turn your ideas into reality. The authors, both Google Developer Experts in Google Cloud Platform, systematically introduce various Cloud Platform products one at a time and discuss their strengths and scenarios where they are a suitable fit. But rather than a manual-like "tell all" approach, the emphasis is on how to Get Things Done so that you get up to speed with Google Cloud Platform as quickly as possible. You will learn how to use the following technologies, among others: Google Compute Engine Google App Engine Google Container Engine Google App Engine Managed VMs Google Cloud SQL Google Cloud Storage Google Cloud Datastore Google BigQuery Google Cloud Dataflow Google Cloud DNS Google Cloud Pub/Sub Google Cloud Endpoints Google Cloud Deployment Manager Author on Google Cloud Platform Google APIs and Translate API Using real-world examples, the authors first walk you through the basics of cloud computing, cloud terminologies and public cloud services. Then they dive right into Google Cloud Platform and how you can use it to tackle your challenges, build new products, analyze big data, and much more. Whether you’re an independent developer, startup, or Fortune 500 company, you have never had easier to access to world-class production, product development, and infrastructure tools. Google Cloud Platform is your ticket to leveraging your skills and knowledge into making reliable, scalable, and efficient products—just like how Google builds its own products.
Building Machine Learning and Deep Learning Models on Google Cloud Platform
Author: Ekaba Bisong
Publisher: Apress
ISBN: 1484244702
Category : Computers
Languages : en
Pages : 703
Book Description
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers
Publisher: Apress
ISBN: 1484244702
Category : Computers
Languages : en
Pages : 703
Book Description
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers
Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing
Author: Velayutham, Sathiyamoorthi
Publisher: IGI Global
ISBN: 1799831132
Category : Computers
Languages : en
Pages : 350
Book Description
In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.
Publisher: IGI Global
ISBN: 1799831132
Category : Computers
Languages : en
Pages : 350
Book Description
In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.
Hands-On Machine Learning on Google Cloud Platform
Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788398874
Category : Computers
Languages : en
Pages : 489
Book Description
Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy
Publisher: Packt Publishing Ltd
ISBN: 1788398874
Category : Computers
Languages : en
Pages : 489
Book Description
Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy