Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Classical Theory of Algebraic Numbers
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Classical Theory of Algebraic Numbers
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 9780387950709
Category : Mathematics
Languages : en
Pages : 716
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Publisher: Springer Science & Business Media
ISBN: 9780387950709
Category : Mathematics
Languages : en
Pages : 716
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Lectures on the Theory of Algebraic Numbers
Author: E. T. Hecke
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251
Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251
Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
A Classical Invitation to Algebraic Numbers and Class Fields
Author: Harvey Cohn
Publisher: Springer Science & Business Media
ISBN: 1461299500
Category : Mathematics
Languages : en
Pages : 344
Book Description
"Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"
Publisher: Springer Science & Business Media
ISBN: 1461299500
Category : Mathematics
Languages : en
Pages : 344
Book Description
"Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"
A Classical Introduction to Modern Number Theory
Author: K. Ireland
Publisher: Springer Science & Business Media
ISBN: 1475717792
Category : Mathematics
Languages : en
Pages : 355
Book Description
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.
Publisher: Springer Science & Business Media
ISBN: 1475717792
Category : Mathematics
Languages : en
Pages : 355
Book Description
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.
A Brief Guide to Algebraic Number Theory
Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Theory of Algebraic Integers
Author: Richard Dedekind
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170
Book Description
A translation of a classic work by one of the truly great figures of mathematics.
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170
Book Description
A translation of a classic work by one of the truly great figures of mathematics.
A Conversational Introduction to Algebraic Number Theory
Author: Paul Pollack
Publisher: American Mathematical Soc.
ISBN: 1470436531
Category : Mathematics
Languages : en
Pages : 329
Book Description
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
Publisher: American Mathematical Soc.
ISBN: 1470436531
Category : Mathematics
Languages : en
Pages : 329
Book Description
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
Algebraic Theory of Numbers
Author: Pierre Samuel
Publisher: Dover Books on Mathematics
ISBN: 9780486466668
Category : Mathematics
Languages : en
Pages : 0
Book Description
Algebraic number theory introduces students to new algebraic notions as well as related concepts: groups, rings, fields, ideals, quotient rings, and quotient fields. This text covers the basics, from divisibility theory in principal ideal domains to the unit theorem, finiteness of the class number, and Hilbert ramification theory. 1970 edition.
Publisher: Dover Books on Mathematics
ISBN: 9780486466668
Category : Mathematics
Languages : en
Pages : 0
Book Description
Algebraic number theory introduces students to new algebraic notions as well as related concepts: groups, rings, fields, ideals, quotient rings, and quotient fields. This text covers the basics, from divisibility theory in principal ideal domains to the unit theorem, finiteness of the class number, and Hilbert ramification theory. 1970 edition.
A Course in Algebraic Number Theory
Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 0486477541
Category : Mathematics
Languages : en
Pages : 130
Book Description
This text for a graduate-level course covers the general theory of factorization of ideals in Dedekind domains as well as the number field case. It illustrates the use of Kummer's theorem, proofs of the Dirichlet unit theorem, and Minkowski bounds on element and ideal norms. 2003 edition.
Publisher: Courier Corporation
ISBN: 0486477541
Category : Mathematics
Languages : en
Pages : 130
Book Description
This text for a graduate-level course covers the general theory of factorization of ideals in Dedekind domains as well as the number field case. It illustrates the use of Kummer's theorem, proofs of the Dirichlet unit theorem, and Minkowski bounds on element and ideal norms. 2003 edition.