Author: Thomas A. Lipo
Publisher: John Wiley & Sons
ISBN: 1119352169
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author’s notes, as well as after years of classroom instruction, Introduction to AC Machine Design: Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior Introduces electrical machine design to neophytes while also being a resource for experienced designers Fully examines AC machine design, beginning with basic electromagnetic principles Covers the many facets of the induction machine design Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.
Introduction to AC Machine Design
Author: Thomas A. Lipo
Publisher: John Wiley & Sons
ISBN: 1119352169
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author’s notes, as well as after years of classroom instruction, Introduction to AC Machine Design: Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior Introduces electrical machine design to neophytes while also being a resource for experienced designers Fully examines AC machine design, beginning with basic electromagnetic principles Covers the many facets of the induction machine design Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.
Publisher: John Wiley & Sons
ISBN: 1119352169
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author’s notes, as well as after years of classroom instruction, Introduction to AC Machine Design: Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior Introduces electrical machine design to neophytes while also being a resource for experienced designers Fully examines AC machine design, beginning with basic electromagnetic principles Covers the many facets of the induction machine design Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.
Asynchronous Sequential Machine Design and Analysis
Author: Richard Tinder
Publisher: Springer Nature
ISBN: 3031797884
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
Asynchronous Sequential Machine Design and Analysis provides a lucid, in-depth treatment of asynchronous state machine design and analysis presented in two parts: Part I on the background fundamentals related to asynchronous sequential logic circuits generally, and Part II on self-timed systems, high-performance asynchronous programmable sequencers, and arbiters. Part I provides a detailed review of the background fundamentals for the design and analysis of asynchronous finite state machines (FSMs). Included are the basic models, use of fully documented state diagrams, and the design and characteristics of basic memory cells and Muller C-elements. Simple FSMs using C-elements illustrate the design process. The detection and elimination of timing defects in asynchronous FSMs are covered in detail. This is followed by the array algebraic approach to the design of single-transition-time machines and use of CAD software for that purpose, one-hot asynchronous FSMs, and pulse mode FSMs. Part I concludes with the analysis procedures for asynchronous state machines. Part II is concerned mainly with self-timed systems, programmable sequencers, and arbiters. It begins with a detailed treatment of externally asynchronous/internally clocked (or pausable) systems that are delay-insensitive and metastability-hardened. This is followed by defect-free cascadable asynchronous sequencers, and defect-free one-hot asynchronous programmable sequencers--their characteristics, design, and applications. Part II concludes with arbiter modules of various types, those with and without metastability protection, together with applications. Presented in the appendices are brief reviews covering mixed-logic gate symbology, Boolean algebra, and entered-variable K-map minimization. End-of-chapter problems and a glossary of terms, expressions, and abbreviations contribute to the reader's learning experience. Five productivity tools are made available specifically for use with this text and briefly discussed in the Preface. Table of Contents: I: Background Fundamentals for Design and Analysis of Asynchronous State Machines / Introduction and Background / Simple FSM Design and Initialization / Detection and Elimination of Timing Defects in Asynchronous FSMs / Design of Single Transition Time Machines / Design of One-Hot Asynchronous FSMs / Design of Pulse Mode FSMs / Analysis of Asynchronous FSMs / II: Self-Timed Systems/ Programmable Sequencers, and Arbiters / Externally Asynchronous/Internally Clocked Systems / Cascadable Asynchronous Programmable Sequencers (CAPS) and Time-Shared System Design / Asynchronous One-Hot Programmable Sequencer Systems / Arbiter Modules
Publisher: Springer Nature
ISBN: 3031797884
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
Asynchronous Sequential Machine Design and Analysis provides a lucid, in-depth treatment of asynchronous state machine design and analysis presented in two parts: Part I on the background fundamentals related to asynchronous sequential logic circuits generally, and Part II on self-timed systems, high-performance asynchronous programmable sequencers, and arbiters. Part I provides a detailed review of the background fundamentals for the design and analysis of asynchronous finite state machines (FSMs). Included are the basic models, use of fully documented state diagrams, and the design and characteristics of basic memory cells and Muller C-elements. Simple FSMs using C-elements illustrate the design process. The detection and elimination of timing defects in asynchronous FSMs are covered in detail. This is followed by the array algebraic approach to the design of single-transition-time machines and use of CAD software for that purpose, one-hot asynchronous FSMs, and pulse mode FSMs. Part I concludes with the analysis procedures for asynchronous state machines. Part II is concerned mainly with self-timed systems, programmable sequencers, and arbiters. It begins with a detailed treatment of externally asynchronous/internally clocked (or pausable) systems that are delay-insensitive and metastability-hardened. This is followed by defect-free cascadable asynchronous sequencers, and defect-free one-hot asynchronous programmable sequencers--their characteristics, design, and applications. Part II concludes with arbiter modules of various types, those with and without metastability protection, together with applications. Presented in the appendices are brief reviews covering mixed-logic gate symbology, Boolean algebra, and entered-variable K-map minimization. End-of-chapter problems and a glossary of terms, expressions, and abbreviations contribute to the reader's learning experience. Five productivity tools are made available specifically for use with this text and briefly discussed in the Preface. Table of Contents: I: Background Fundamentals for Design and Analysis of Asynchronous State Machines / Introduction and Background / Simple FSM Design and Initialization / Detection and Elimination of Timing Defects in Asynchronous FSMs / Design of Single Transition Time Machines / Design of One-Hot Asynchronous FSMs / Design of Pulse Mode FSMs / Analysis of Asynchronous FSMs / II: Self-Timed Systems/ Programmable Sequencers, and Arbiters / Externally Asynchronous/Internally Clocked Systems / Cascadable Asynchronous Programmable Sequencers (CAPS) and Time-Shared System Design / Asynchronous One-Hot Programmable Sequencer Systems / Arbiter Modules
Design of Rotating Electrical Machines
Author: Juha Pyrhonen
Publisher: John Wiley & Sons
ISBN: 1118701658
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.
Publisher: John Wiley & Sons
ISBN: 1118701658
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.
Electrical Machine Design
Author: V Rajini
Publisher: Pearson Education India
ISBN: 935306368X
Category :
Languages : en
Pages : 650
Book Description
Electrical Machine Design caters to the requirements of undergraduate and postgraduate students of electrical engineering and industry novices. The authors have adopted a flow chart based approach to explain the subject. This enables an in-depth understanding of the design of different types of electrical machines with an appropriate introduction to basic design considerations and the magnetic circuits involved. The book aids students to prepare for various competitive exams through objective questions, worked-out examples and review questions in increasing order of difficulty. MATLAB and C programs and Finite Element simulations using Motor Solve, featured in the text offers a profound new perspective in understanding of automated design of electrical machines.
Publisher: Pearson Education India
ISBN: 935306368X
Category :
Languages : en
Pages : 650
Book Description
Electrical Machine Design caters to the requirements of undergraduate and postgraduate students of electrical engineering and industry novices. The authors have adopted a flow chart based approach to explain the subject. This enables an in-depth understanding of the design of different types of electrical machines with an appropriate introduction to basic design considerations and the magnetic circuits involved. The book aids students to prepare for various competitive exams through objective questions, worked-out examples and review questions in increasing order of difficulty. MATLAB and C programs and Finite Element simulations using Motor Solve, featured in the text offers a profound new perspective in understanding of automated design of electrical machines.
Digital Logic and State Machine Design
Author: David J. Comer
Publisher: Oxford University Press on Demand
ISBN: 9780195107234
Category : Computers
Languages : en
Pages : 573
Book Description
From one of the best-known and successful authors in the field comes this new edition of Digital Logic and State Machine Design. The text is concise and practical, and covers the important area of digital system design specifically for undergraduates. Comer's primary goal is to illustrate that sequential circuits can be designed using state machine techniques. These methods apply to sequential circuit design as efficiently as Boolean algebra and Karnaugh mapping methods apply to combinatorial design. After presenting the techniques, Comer proceeds directly into designing digital systems. This task consists of producing the schematic or block diagram of the system based on nothing more than a given set of specifications. The design serves as the basis for the construction of the actual hardware system. In the new Third Edition, Comer introduces state machines earlier than in previous editions, and adds entire chapters on programmable logic devices and computer organization.
Publisher: Oxford University Press on Demand
ISBN: 9780195107234
Category : Computers
Languages : en
Pages : 573
Book Description
From one of the best-known and successful authors in the field comes this new edition of Digital Logic and State Machine Design. The text is concise and practical, and covers the important area of digital system design specifically for undergraduates. Comer's primary goal is to illustrate that sequential circuits can be designed using state machine techniques. These methods apply to sequential circuit design as efficiently as Boolean algebra and Karnaugh mapping methods apply to combinatorial design. After presenting the techniques, Comer proceeds directly into designing digital systems. This task consists of producing the schematic or block diagram of the system based on nothing more than a given set of specifications. The design serves as the basis for the construction of the actual hardware system. In the new Third Edition, Comer introduces state machines earlier than in previous editions, and adds entire chapters on programmable logic devices and computer organization.
Design and Testing of Electrical Machines
Author: M. V. Deshpande
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120336453
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
The basic theory, principle of operation and characteristics of transformers, three-phase induction motors, single-phase induction motors, synchronous machines and dc machines are dealt with in Appendices to provide the background for the design of these machines. The initial chapters of the book are devoted to basic parameters of design of electrical apparatus, characteristics of magnetic, electric and insulating materials, construction of electrical machines, and basic design requirements of magnetic and electrical circuits of machines. Detailed procedures for designing transformers, three-phase induction motors, single-phase induction motors, synchronous machines and dc machines are explained in a simple and logical way. Several sample designs have been wroked out in detail. Methods of carrying out various tests and maintaining test records are discussed in detail. The use of computers in designing electrical machines has been illustrated. An exclusive chapter on special machines explains the basic theory and applications of stepper motors, rotating phase converters, pole amplitude modulated (PAM) motors, reluctance motors and energy efficient motors. This book is intended for degree and diploma students of electrical engineering and professional examinations of the Institution of Engineers (India). It will be useful for electrical engineers in industry engaged in design, manufacture and testing of electrical machines.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120336453
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
The basic theory, principle of operation and characteristics of transformers, three-phase induction motors, single-phase induction motors, synchronous machines and dc machines are dealt with in Appendices to provide the background for the design of these machines. The initial chapters of the book are devoted to basic parameters of design of electrical apparatus, characteristics of magnetic, electric and insulating materials, construction of electrical machines, and basic design requirements of magnetic and electrical circuits of machines. Detailed procedures for designing transformers, three-phase induction motors, single-phase induction motors, synchronous machines and dc machines are explained in a simple and logical way. Several sample designs have been wroked out in detail. Methods of carrying out various tests and maintaining test records are discussed in detail. The use of computers in designing electrical machines has been illustrated. An exclusive chapter on special machines explains the basic theory and applications of stepper motors, rotating phase converters, pole amplitude modulated (PAM) motors, reluctance motors and energy efficient motors. This book is intended for degree and diploma students of electrical engineering and professional examinations of the Institution of Engineers (India). It will be useful for electrical engineers in industry engaged in design, manufacture and testing of electrical machines.
Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives
Author: Marius Rosu
Publisher: John Wiley & Sons
ISBN: 1119103444
Category : Science
Languages : en
Pages : 312
Book Description
Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.
Publisher: John Wiley & Sons
ISBN: 1119103444
Category : Science
Languages : en
Pages : 312
Book Description
Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.
Fundamentals of Layout Design for Electronic Circuits
Author: Jens Lienig
Publisher: Springer Nature
ISBN: 3030392848
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
This book covers the fundamental knowledge of layout design from the ground up, addressing both physical design, as generally applied to digital circuits, and analog layout. Such knowledge provides the critical awareness and insights a layout designer must possess to convert a structural description produced during circuit design into the physical layout used for IC/PCB fabrication. The book introduces the technological know-how to transform silicon into functional devices, to understand the technology for which a layout is targeted (Chap. 2). Using this core technology knowledge as the foundation, subsequent chapters delve deeper into specific constraints and aspects of physical design, such as interfaces, design rules and libraries (Chap. 3), design flows and models (Chap. 4), design steps (Chap. 5), analog design specifics (Chap. 6), and finally reliability measures (Chap. 7). Besides serving as a textbook for engineering students, this book is a foundational reference for today’s circuit designers. For Slides and Other Information: https://www.ifte.de/books/pd/index.html
Publisher: Springer Nature
ISBN: 3030392848
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
This book covers the fundamental knowledge of layout design from the ground up, addressing both physical design, as generally applied to digital circuits, and analog layout. Such knowledge provides the critical awareness and insights a layout designer must possess to convert a structural description produced during circuit design into the physical layout used for IC/PCB fabrication. The book introduces the technological know-how to transform silicon into functional devices, to understand the technology for which a layout is targeted (Chap. 2). Using this core technology knowledge as the foundation, subsequent chapters delve deeper into specific constraints and aspects of physical design, such as interfaces, design rules and libraries (Chap. 3), design flows and models (Chap. 4), design steps (Chap. 5), analog design specifics (Chap. 6), and finally reliability measures (Chap. 7). Besides serving as a textbook for engineering students, this book is a foundational reference for today’s circuit designers. For Slides and Other Information: https://www.ifte.de/books/pd/index.html
Digital Computer Technology and Design: Circuits and machine design
Author: Willis H. Ware
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 584
Book Description
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 584
Book Description
Mathematical Models for the Design of Electrical Machines
Author: Frédéric Dubas
Publisher: MDPI
ISBN: 3036503986
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.
Publisher: MDPI
ISBN: 3036503986
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.