Charge and Spin Transport in Disordered Graphene-Based Materials

Charge and Spin Transport in Disordered Graphene-Based Materials PDF Author: Dinh Van Tuan
Publisher: Springer
ISBN: 3319255711
Category : Science
Languages : en
Pages : 162

Book Description
This thesis presents an in-depth theoretical analysis of charge and spin transport properties in complex forms of disordered graphene. It relies on innovative real space computational methods of the time-dependent spreading of electronic wave packets. First a universal scaling law of the elastic mean free path versus the average grain size is predicted for polycrystalline morphologies, and charge mobilities of up to 300.000 cm2/V.s are determined for 1 micron grain size, while amorphous graphene membranes are shown to behave as Anderson insulators. An unprecedented spin relaxation mechanism, unique to graphene and driven by spin/pseudospin entanglement is then reported in the presence of weak spin-orbit interaction (gold ad-atom impurities) together with the prediction of a crossover from a quantum spin Hall Effect to spin Hall effect (for thallium ad-atoms), depending on the degree of surface ad-atom segregation and the resulting island diameter.

Charge and Spin Transport in Disordered Graphene-based Materials

Charge and Spin Transport in Disordered Graphene-based Materials PDF Author: Van Tuan Dinh
Publisher:
ISBN: 9788449046056
Category :
Languages : en
Pages : 228

Book Description
Esta tesis está enfocada en la modelización y simulación del transporte de carga y spin en materiales bidimensionales basados en Grafeno, así como en el impacto de la policristalinidad en el rendimiento de transistores de efecto campo diseñados con este tipo de materiales. Para este estudio se ha utilizado la metodología de transporte Kubo-Greenwood, la cual presenta grandes ventajas a la hora de realizar cálculos numéricos en sistemas microscópicos con el fin de obtener las propiedades de transporte de carga. Este trabajo cubre todos los tipos de desorden que pueden tener lugar en Grafeno, desde vacantes a la posible adsorción de especies químicas a lo largo de las fronteras de grano en el caso de Grafeno policristalino. Además tiene en cuenta importantes efectos cuánticos, como las interferencias cuánticas y los efectos debidos al acoplamiento spin-órbita intrínseco y extrínseco. Para el transporte de spin, se ha desarrollado un nuevo método basado en el formalismo de transporte en espacio real de orden O(N). Este nuevo método permite explorar y entender los mecanismos de relajación de spin en Grafeno y sus derivados. A partir de esta nueva metodología ha sido posible descubrir un nuevo mecanismo de relajación de spin basado en el acoplamiento entre spin y pseudospin (en presencia de un acoplamiento spin-órbita extrínseco o Rashba) que podría ser el mecanismo principal que gobierna la rápida relajación de spin observada experimentalmente en muestras de grafeno de alta calidad.

Introduction to Graphene-Based Nanomaterials

Introduction to Graphene-Based Nanomaterials PDF Author: Luis E. F. Foa Torres
Publisher: Cambridge University Press
ISBN: 1108476996
Category : Science
Languages : en
Pages : 479

Book Description
An introduction to the electrical and transport properties of graphene and other two-dimensional nanomaterials.

Handbook of Graphene, Volume 6

Handbook of Graphene, Volume 6 PDF Author: Barbara Palys
Publisher: John Wiley & Sons
ISBN: 1119469767
Category : Technology & Engineering
Languages : en
Pages : 961

Book Description
The sixth volume in a series of handbooks on graphene research and applications The Handbook of Graphene, Volume 6: Biosensors and Advanced Sensors discusses the unique benefits that the discovery of graphene has brought to the sensing and biosensing sectors. It examines graphene's use in leading-edge technology applications and the development of a variety of graphene-based sensors. The handbook looks at how graphene can be used as an electrode, substrate, or transducer in sensor design. Graphene-based sensor detection has achieved up to femto-levels, with performances delivering the advantages of greater selectivity, sensitivity, and stability.

Light-Emitting Diodes and Photodetectors

Light-Emitting Diodes and Photodetectors PDF Author: Maurizio Casalino
Publisher: BoD – Books on Demand
ISBN: 1839685557
Category : Technology & Engineering
Languages : en
Pages : 208

Book Description
This book provides a detailed overview of the most recent advances in the fascinating world of light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), and photodetectors (PDs). Chapters in Section 1 discuss the different types and designs of LEDs/OLEDs and their use in light output, color rendering, and more. Chapters in Section 2 examine innovative structures, emerging materials, and physical effects of PDs. This book is a useful resource for students and scientists working in the field of photonics and advanced technologies.

High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels

High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels PDF Author:
Publisher:
ISBN:
Category : Graphene
Languages : en
Pages : 117

Book Description
Spintronics reaches beyond typical charge-based information storage technologies by utilizing an addressable degree of freedom for electron manipulation, the electron spin polarization. With mounting experimental data and improved theoretical understanding of spin manipulation, spintronics has become a potential alternative to charge-based technologies. However, for a long time, spintronics was not thought to be feasible without the ability to electrostatically control spin conductance at room temperature. Only recently, graphene, a 2D honeycomb crystalline allotrope of carbon only one atom thick, was identified because of its predicted, long spin coherence length and experimentally realized electrostatic gate tunability. However, there exist several challenges with graphene spintronics implementation including weak spin-orbit coupling that provides excellent spin transfer yet prevents charge to spin current conversion, and a conductivity mismatch due to the large difference in carrier density between graphene and a ferromagnet (FM) that must be mitigated by use of a tunnel barrier contact. Additionally, the usage of graphene produced via CVD methods amenable to semiconductor industry in conjunction with graphene spin valve fabrication must be explored in order to promote implementation of graphene-based spintronics. Despite advances in the area of graphene-based spintronics, there is a lack of understanding regarding the coupling of industry-amenable techniques for both graphene synthesis and lateral spin valve fabrication. In order to make any impact on the application of graphene spintronics in industry, it is critical to demonstrate wafer-scale graphene spin devices enabled by wafer-scale graphene synthesis, which utilizes thin film, wafer-supported CVD growth methods. In this work, high-quality graphene was synthesized using a vertical cold-wall furnace and catalyst confinement on both SiO2/Si and C-plane sapphire wafers and the implementation of the as-grown graphene for fabrication of graphene-based non-local spin valves was examined. Optimized CVD graphene was demonstrated to have ID/G ≈ 0.04 and I2D/G ≈ 2.3 across a 2" diameter graphene film with excellent continuity and uniformity. Since high-quality, large-area, and continuous CVD graphene was grown, it enabled the fabrication of large device arrays with 40 individually addressable non-local spin valves exhibiting 83% yield. Using these arrays, the effects of channel width and length, ferromagnetic-tunnel barrier width, tunnel barrier thickness, and level of oxidation for Ti-based tunnel barrier contacts were elucidated. Non-local, in-plane magnetic sweeps resulted in high signal-to-noise ratios with measured [Delta]RNL across the as-fabricated arrays as high as 12 [omega] with channel lengths up to 2 μm. In addition to in-plane magnetic field spin signal values, vertical magnetic field precession Hanle effect measurements were conducted. From this, spin transport properties were extracted including: spin polarization efficiency, coherence lifetime, and coherence distance. The evaluation of industry-amenable production methods of both high-quality graphene and lateral graphene non-local spin valves are the first steps toward promoting the feasibility of graphene as a lateral spin transport interconnect material in future spintronics applications. By addressing issues using a holistic approach, from graphene synthesis to spin transport implementation, it is possible to begin assessment of the challenges involved for graphene spintronics.

Spin Dynamics in Two-Dimensional Quantum Materials

Spin Dynamics in Two-Dimensional Quantum Materials PDF Author: Marc Vila Tusell
Publisher: Springer Nature
ISBN: 3030861147
Category : Technology & Engineering
Languages : en
Pages : 169

Book Description
This thesis focuses on the exploration of nontrivial spin dynamics in graphene-based devices and topological materials, using realistic theoretical models and state-of-the-art quantum transport methodologies. The main outcomes of this work are: (i) the analysis of the crossover from diffusive to ballistic spin transport regimes in ultraclean graphene nonlocal devices, and (ii) investigation of spin transport and spin dynamics phenomena (such as the (quantum) spin Hall effect) in novel topological materials, such as monolayer Weyl semimetals WeTe2 and MoTe2. Indeed, the ballistic spin transport results are key for further interpretation of ultraclean spintronic devices, and will enable extracting precise values of spin diffusion lengths in diffusive transport and guide experiments in the (quasi)ballistic regime. Furthermore, the thesis provides an in-depth theoretical interpretation of puzzling huge measured efficiencies of the spin Hall effect in MoTe2, as well as a prediction of a novel canted quantum spin Hall effect in WTe2 with spins pointing in the yz plane.

Charge and Spin Transport in Low-dimensional Materials

Charge and Spin Transport in Low-dimensional Materials PDF Author: Amin Ahmadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Book Description
My research has been focused on two main areas. First, electronic transports in chiral carbon nanotubes in the presence of charged adatoms. To study such systems we employed recursive Greens function technique to evaluate the conductance using the Landauer formula. Comparing with the experimental data, we determined the effective amplitude and the range of scattering potentials. In addition, using a similar approach we explained qualitatively an unusual conductance feature in a metallic carbon nanotube. The second part of my study was concerned to the dynamical spin injection and spin currents in low-dimensional materials. We have developed an atomistic model to express the injected spin current in terms of the systems Greens function. The new formulation provides a framework to study the spin injection and relaxation of a system with an arbitrary structure.

Graphene in Spintronics

Graphene in Spintronics PDF Author: Junichiro Inoue
Publisher: CRC Press
ISBN: 9814669571
Category : Science
Languages : en
Pages : 296

Book Description
The discovery and fabrication of new materials have opened the gate for new research fields in science and technology. The novel method of fabricating graphene, a purely 2D carbon lattice, and the discovery of the phenomenon of giant magnetoresistance (GMR) in magnetic multilayers are not exceptions. The latter has brought about the creation of the

Spin-dependent Transport in Graphene Nanostructures

Spin-dependent Transport in Graphene Nanostructures PDF Author: Jan Bundesmann
Publisher: Universitatsverlag Regensburg
ISBN: 9783868451153
Category :
Languages : en
Pages : 0

Book Description
Graphene, a two-dimensional material consisting of carbon atoms arranged in a honeycomb lattice, has become famous for the evidence that its electronic structure approximately corresponds to the one of massless Dirac fermions. However, in order to correctly describe graphene , the spin, which plays an essential role in the physics of Dirac fermions, has to be replaced by the so-called pseudospin, an intrinsic property of the honeycomb lattice which is not related to the electrons' real spin. If, now, the real spin is considered, too, the effective Hamiltonian has to be extended by terms which have no equivalents in the original Dirac Hamiltonian. While charge transport properties can be predicted from Dirac physics very realiably, the extended Hamiltonian leads to new phenomena in the context of spin transport. In this thesis two distinct topics are investigated theoretically. The presented results are mainly based on numerical simulations using a recursive Green's function algorithm. The first part of this thesis covers spin relaxation in graphene. Different sources of spin relaxation are investigated with a particular focus on the role of locally varying spin-orbit coupling and adatoms. The second part covers edge magnetism in graphene zigzag nanoribbons. It is shown how magnetic clusters form even in the presence of a potential which is not homogeneous in space. Different signatures of zigzag edge magnetization on charge and spin transport are presented.