Characterizing Local Structure in Complex Oxides with Quantitative Scanning Transmission Electron Microscopy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Characterizing Local Structure in Complex Oxides with Quantitative Scanning Transmission Electron Microscopy PDF full book. Access full book title Characterizing Local Structure in Complex Oxides with Quantitative Scanning Transmission Electron Microscopy by Jack Y. Zhang. Download full books in PDF and EPUB format.

Characterizing Local Structure in Complex Oxides with Quantitative Scanning Transmission Electron Microscopy

Characterizing Local Structure in Complex Oxides with Quantitative Scanning Transmission Electron Microscopy PDF Author: Jack Y. Zhang
Publisher:
ISBN: 9781369146899
Category :
Languages : en
Pages : 180

Book Description
Perovskite oxides remain a material class with properties that can be difficult to predict. Strong electron correlations, coupling between electron, lattice, spin and orbital degrees of freedoms, combined with the versatility of the structure itself, result in a wide range of properties, with unique emergent phenomena that occur only at heterointerfaces. Structure plays an especially important role in determining the properties of perovskite oxides. Small distortions in the lattice, particularly rotations or tilts of the oxygen octahedra, can have large effects on the material's electrical and magnetic properties. One way we can tune these rotations is by growing thin film heterostructures, allowing us to tailor the properties of these materials in ways not possible in the bulk. Therefore, determining the local atomic structure in these films is critical for understanding the structure-property relationships, and the origin of any emergent behavior that may exist at an interface.

Characterizing Local Structure in Complex Oxides with Quantitative Scanning Transmission Electron Microscopy

Characterizing Local Structure in Complex Oxides with Quantitative Scanning Transmission Electron Microscopy PDF Author: Jack Y. Zhang
Publisher:
ISBN: 9781369146899
Category :
Languages : en
Pages : 180

Book Description
Perovskite oxides remain a material class with properties that can be difficult to predict. Strong electron correlations, coupling between electron, lattice, spin and orbital degrees of freedoms, combined with the versatility of the structure itself, result in a wide range of properties, with unique emergent phenomena that occur only at heterointerfaces. Structure plays an especially important role in determining the properties of perovskite oxides. Small distortions in the lattice, particularly rotations or tilts of the oxygen octahedra, can have large effects on the material's electrical and magnetic properties. One way we can tune these rotations is by growing thin film heterostructures, allowing us to tailor the properties of these materials in ways not possible in the bulk. Therefore, determining the local atomic structure in these films is critical for understanding the structure-property relationships, and the origin of any emergent behavior that may exist at an interface.

Scanning Transmission Electron Microscopy

Scanning Transmission Electron Microscopy PDF Author: Alina Bruma
Publisher: CRC Press
ISBN: 0429512732
Category : Computers
Languages : en
Pages : 164

Book Description
Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science–derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.

Quantifying Short-Range Chemical and Structural Order in Complex Oxides Via Scanning Transmission Electron Microscopy

Quantifying Short-Range Chemical and Structural Order in Complex Oxides Via Scanning Transmission Electron Microscopy PDF Author: Matthew John Cabral
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Book Description


Springer Handbook of Advanced Catalyst Characterization

Springer Handbook of Advanced Catalyst Characterization PDF Author: Israel E. Wachs
Publisher: Springer Nature
ISBN: 3031071255
Category : Technology & Engineering
Languages : en
Pages : 1109

Book Description
Co-edited by world-renowned scientists in the field of catalysis, this book contains the cutting-edge in situ and operando spectroscopy characterization techniques operating under reaction conditions to determine a materials’ bulk, surface, and solution complex and their applications in the field of catalysis with emphasis on solid catalysts in powder form since such catalyst are relevant for industrial applications. The handbook covers from widely-used to cutting-edge techniques. The handbook is written for a broad audience of students and professionals who want to pursue the full capabilities available by the current state-of-the-art in characterization to fully understand how their catalysts really operate and guide the rational design of advanced catalysts. Individuals involved in catalysis research will be interested in this handbook because it contains a catalogue of cutting-edge methods employed in characterization of catalysts. These techniques find wide use in applications such as petroleum refining, chemical manufacture, natural gas conversion, pollution control, transportation, power generation, pharmaceuticals and food processing. fdsfds

Atomic Scale Characterization of Complex Oxide Thin Films

Atomic Scale Characterization of Complex Oxide Thin Films PDF Author: Meng Gu
Publisher:
ISBN: 9781267240491
Category :
Languages : en
Pages :

Book Description
Materials with the ABO3 perovskite structure possess a wide variety of properties including superconductivity, ferroelectric, and magnetic properties. These properties are highly tunable due to the fact that the B site cation can assume multiple valence states and its high structural stability allows for large scale doping and strain. Due to a reduced dimensionality, two dimensional thin films and superlattices grown using techniques such as pulsed laser deposition (PLD) often possess novel properties which differ from the bulk perovskite materials. The origins of these novel properties can be traced to interfacial chemical intermixing, electronic reconstruction, strain as well as defect formation, which cause significant changes in the electronic structures. Therefore, it is crucially important to investigate the atomic and electronic structures of the functional materials in order to understand the correlation between microstructures and physical properties. Chemically-sensitive Z-contrast imaging and bonding-sensitive electron energy loss spectroscopy (EELS) in aberration corrected scanning transmission electron microscopes (STEM) can directly characterize the local structure, strain, composition and bonding on the atomic scale. Determination of the atomic and electronic structures of the interfaces and defects in the thin films can then be correlated with the magnetic and transport properties. Therefore, the understanding of the structure-property relationship for several different systems of perovskite oxide thin films and superlattices were developed on the atomic scale. Multifunctional superlattices composed of ferromagnetic (FM) La(0.7)Sr(0.3)MnO3 (LSMO) and antiferromagnetic (AFM) La(0.7)Sr(0.3)FeO3 (LSFO) have potential applications for next generation data storage and logic devices. Defect formation, driven by strain relaxation in the LSMO/LSFO superlattices can modify not only the structure and surface sharpness, but also the functional properties of the superlattice. Stacking faults were found as one efficient way of strain relaxation while maintaining robust antiferromagnetic properties for a thin [3LSMO][6LSFO] superlattice (repeating motif composed of 3 unit-cell LSMO sublayer and 6 unit-cell LSFO sublayer). On the other hand, for a fully strained [3LSMO][6LSFO], large inter-diffusion across the interface between the LSMO and LSFO layers was detected in EELS line scans, resulting in deteriorated AFM properties. When a [6LSMO][6LSFO] superlattice with one micron thickness, a high density of nanoflowers and cracks/pinholes were observed to result from strain relaxation. The formation of these nanoflowers and cracks/pinholes was suppressed by increasing the growth rate and thereby reducing the growth time and overall thermal treatment of the sample. Strain relaxation was shown to be directly related to the growth conditions and have a large effect on both the structure and functional properties of the superlattices. A series of superlattices composed of non-magnetic La(0.5)Sr(0.5)TiO3 (LSTO) and ferromagnetic LSMO were grown on single crystal oxide substrates with different amounts of misfit strain. No significant electronic structure changes along the interfaces was observed in this series of superlattices as revealed by atomic resolution EELS. In comparison, charge transfer effect was reported for the LSMO/STO superlattices and was shown to cause an ultrathin magnetic dead layer along the interfaces. Thus, compared with the LSMO/STO superlattice, composition tuning of the sublayers was proven to be efficient in controlling the interfacial charge transfer effects in a superlattice. In addition, tetragonal distortion was found to reduce the ferromagnetic ordering, decrease the Tc, increase the resistivity, and even lead to metal-insulator transitions of the superlattices. The strain relaxation defects such as dislocations and low angle grain boundaries serve as important pinning sites for magnetic domains, leading to enhanced coercive field strength. In order to determine the properties of an intermixed interface layer, we have performed a detailed study of the solid solution between LSMO and LSFO, i.e. La(0.7)Sr(0.3)Mn(0.5)Fe(0.5)O3 (LSMFO). A large target-substrate distance during the PLD growth led to cation segregation in the LSMFO film. Cation segregation could cause the formation of diverse local magnetic ordering and B site valence states due to the different local stoichiometry and coordination environment. For the cation segregated LSFMO films, robust ferromagnetic and antiferromagnetic coupling was observed at 150K and room temperature. Decreasing the target-substrate distance resulted to a homogeneous cation distribution in the film, without any ferromagnetic ordering as expected. This result suggests the important role of target-substrate distance and the kinetic energy of the plume species on the crystalline quality and functional properties of perovskite oxide thin films. La(x)Sr(1-x)TiO3 possesses a wide range of functional properties which make it an attractive candidate material for applications such as the conductive buffer for high temperature superconductor growth, transparent conductors, and anodes in solid oxide fuel cells. La(0.5)Sr(0.5)TiO3 thin films were grown using PLD and the resistivity was found to be highly dependent on the O2 background pressure used in the deposition. However, a thin film which was deposited as a single phase film was transformed into a semi-ordered superlattice with TiO2 rich stacking faults and distorted lattices upon exposure to high oxygen pressure (~200torr) during the cooling procedure after deposition. This phase change stabilized Ti4+ ions and dramatically increased the resistivity of the film. In addition, a two dimensional free electron gas could be constructed by confining a few unit cells of La doped STO with STO spacer layers. Our study showed that charge transfer over a distance of ~2 u.c. was present in Sr(0.75)La(0.25)TiO3/STO superlattices. This thickness defined the lower limit for the thickness of the STO spacers in order to confine the charge carriers into two dimensions; secondly, the La dopants were shown to be less localized in thicker superlattice (~100nm) due to interdiffusion upon extended thermal exposure. This information provided important feedback on the fabrication and utilization of this material.In conclusion, several perovskite thin film systems with fascinating properties have been explored in this thesis. Strain states and strain relaxations, defect formation, interfacial atomic mixing, charge transfer, and cation segregation were shown to have profound effect on the functional properties of complex oxide thin film systems. Atomic resolution Z-contrast imaging and EELS provide extremely useful information on the structural and electronic structure variations, which enable us to see the whole picture of growth, structure and properties' interactions.

Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides PDF Author: Gertjan Koster
Publisher: Woodhead Publishing
ISBN: 0081029462
Category : Science
Languages : en
Pages : 534

Book Description
Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites. - Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques - Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry - Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications

Noticia de la vida y literatura de D. Juan de Iriarte

Noticia de la vida y literatura de D. Juan de Iriarte PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Book Description


User Facilities of the Office of Basic Energy Sciences

User Facilities of the Office of Basic Energy Sciences PDF Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 72

Book Description
"This brochure overviews the scientific infrastructure that is constructed, maintained, and operated at Department of Energy laboratories for the pursuit of energy-related research." -- cf p. 4

Oxide Semiconductors

Oxide Semiconductors PDF Author:
Publisher: Academic Press
ISBN: 0123965454
Category : Technology & Engineering
Languages : en
Pages : 369

Book Description
Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. - Written and edited by internationally renowned experts - Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry

Defects in Microelectronic Materials and Devices

Defects in Microelectronic Materials and Devices PDF Author: Daniel M. Fleetwood
Publisher: CRC Press
ISBN: 1420043773
Category : Science
Languages : en
Pages : 772

Book Description
Uncover the Defects that Compromise Performance and ReliabilityAs microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them.A comprehensive survey of defe