Characterizing As-built Hot Mix Asphalt Using Small-scale Specimens PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Characterizing As-built Hot Mix Asphalt Using Small-scale Specimens PDF full book. Access full book title Characterizing As-built Hot Mix Asphalt Using Small-scale Specimens by Erfan Hajibandeh. Download full books in PDF and EPUB format.

Characterizing As-built Hot Mix Asphalt Using Small-scale Specimens

Characterizing As-built Hot Mix Asphalt Using Small-scale Specimens PDF Author: Erfan Hajibandeh
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Measuring the quality of as-built Asphalt Concrete (AC) mixtures provide useful information about the current and long-term performance of pavements. By the advent of the mechanistic-empirical pavement design method, the dynamic modulus has become one of the primary performance indicators required for characterizing the performance of AC mixtures. The dynamic modulus is commonly measured using cylindrical specimens having a 100 mm diameter and a 150 mm height (full-size specimens). Testing as-built AC mixtures using this geometry is rarely possible because the required specimen height is greater than the typical AC lift thickness. In this study, the feasibility of using small-scale cylindrical specimens to measure the dynamic modulus of AC mixtures was investigated. Initially, the specimens were prepared in the laboratory using loose mixtures obtained from the field. Dynamic modulus test was conducted on full-size and two small-scale (common height of 110 mm and two diameters of 38 and 50 mm) geometries extracted from gyratory compacted samples. A uniaxial hydraulic loading frame was used to test specimens at the standard temperatures and frequencies. Both small geometries showed similar performances to full-size specimens except at high temperature of 37.8°C, where they resulted in greater dynamic modulus values compared to full-size geometry. The coefficient of variation for 38mm-diameter specimens was found to be higher than two other geometries. Secondly, field cores were collected from highways to characterize as-built AC mixtures using three tests, including dynamic modulus, Hamburg Wheel-Tracking (HWT), and ignition oven. Ignition oven test was performed on field cores to mainly control the aggregate gradation of mixtures. For the dynamic modulus test, small-scale specimens were extracted from field cores, and stiffness values at 37.8°C were corrected using calibration factors obtained from the initial phase. For the HWT test, the heights of field cores were adjusted, and the test output parameters were correlated with the calibrated dynamic modulus values at 37.8°C. The results showed that small-scale specimens are capable of measuring the as-built dynamic modulus of AC mixtures and predicting their rutting performance in the laboratory.

Characterizing As-built Hot Mix Asphalt Using Small-scale Specimens

Characterizing As-built Hot Mix Asphalt Using Small-scale Specimens PDF Author: Erfan Hajibandeh
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Measuring the quality of as-built Asphalt Concrete (AC) mixtures provide useful information about the current and long-term performance of pavements. By the advent of the mechanistic-empirical pavement design method, the dynamic modulus has become one of the primary performance indicators required for characterizing the performance of AC mixtures. The dynamic modulus is commonly measured using cylindrical specimens having a 100 mm diameter and a 150 mm height (full-size specimens). Testing as-built AC mixtures using this geometry is rarely possible because the required specimen height is greater than the typical AC lift thickness. In this study, the feasibility of using small-scale cylindrical specimens to measure the dynamic modulus of AC mixtures was investigated. Initially, the specimens were prepared in the laboratory using loose mixtures obtained from the field. Dynamic modulus test was conducted on full-size and two small-scale (common height of 110 mm and two diameters of 38 and 50 mm) geometries extracted from gyratory compacted samples. A uniaxial hydraulic loading frame was used to test specimens at the standard temperatures and frequencies. Both small geometries showed similar performances to full-size specimens except at high temperature of 37.8°C, where they resulted in greater dynamic modulus values compared to full-size geometry. The coefficient of variation for 38mm-diameter specimens was found to be higher than two other geometries. Secondly, field cores were collected from highways to characterize as-built AC mixtures using three tests, including dynamic modulus, Hamburg Wheel-Tracking (HWT), and ignition oven. Ignition oven test was performed on field cores to mainly control the aggregate gradation of mixtures. For the dynamic modulus test, small-scale specimens were extracted from field cores, and stiffness values at 37.8°C were corrected using calibration factors obtained from the initial phase. For the HWT test, the heights of field cores were adjusted, and the test output parameters were correlated with the calibrated dynamic modulus values at 37.8°C. The results showed that small-scale specimens are capable of measuring the as-built dynamic modulus of AC mixtures and predicting their rutting performance in the laboratory.

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens PDF Author: Brian K. Diefenderfer
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 50

Book Description
The results of dynamic modulus testing have become one of the primarily used performance criteria to evaluate the laboratory properties of asphalt mixtures. This test is commonly conducted to characterize asphalt mixtures mechanistically using an asphalt mixture performance tester as developed in NCHRP Project 9-29. The typical test specimen geometry consists of a cylinder having a 100-mm diameter and a 150-mm height. This geometry is practical for laboratory-prepared specimens produced using a gyratory compactor. However, the specimen scale is problematic when the test specimen is prepared from field cores and the investigator wishes to isolate the testing to a single asphalt mixture material/layer. This is because most asphalt mixture layers, especially surface and intermediate layers, are placed having a thickness less than 150 mm. This study investigated the use of small-scale cylindrical specimens as an alternative means to conduct dynamic modulus testing of asphalt mixtures. To validate the small-scale approach, the dynamic modulus from small-scale specimens was compared to the dynamic modulus from full-size specimens (100 × 150 mm) using asphalt mixtures having a nominal maximum aggregate size (NMAS) of 9.5, 12.5, 19.0, and 25.0 mm. Small-scale cylindrical specimens having a diameter and height of 38 × 135 mm, 50 × 135 mm, 38 × 110 mm, and 50 × 110 mm were studied. Based on the findings of the study, for 9.5- and 12.5-mm NMAS mixtures, any of the four small-scale geometry dimensions appears to be a suitable alternative to the full-size specimen when the full-size specimen cannot be produced. For 19.0- and 25.0-mm NMAS mixtures, the two small-scale geometries having a diameter of 50 mm appear to be suitable alternatives to the full-size specimen when the full-size specimen cannot be produced.

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens PDF Author: Brian K. Diefenderfer
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 0

Book Description
The results of dynamic modulus testing have become one of the primarily used performance criteria to evaluate the laboratory properties of asphalt mixtures. This test is commonly conducted to characterize asphalt mixtures mechanistically using an asphalt mixture performance tester as developed in NCHRP Project 9-29. The typical test specimen geometry consists of a cylinder having a 100-mm diameter and a 150-mm height. This geometry is practical for laboratory-prepared specimens produced using a gyratory compactor. However, the specimen scale is problematic when the test specimen is prepared from field cores and the investigator wishes to isolate the testing to a single asphalt mixture material/layer. This is because most asphalt mixture layers, especially surface and intermediate layers, are placed having a thickness less than 150 mm. This study investigated the use of small-scale cylindrical specimens as an alternative means to conduct dynamic modulus testing of asphalt mixtures. To validate the small-scale approach, the dynamic modulus from small-scale specimens was compared to the dynamic modulus from full-size specimens (100 × 150 mm) using asphalt mixtures having a nominal maximum aggregate size (NMAS) of 9.5, 12.5, 19.0, and 25.0 mm. Small-scale cylindrical specimens having a diameter and height of 38 × 135 mm, 50 × 135 mm, 38 × 110 mm, and 50 × 110 mm were studied. Based on the findings of the study, for 9.5- and 12.5-mm NMAS mixtures, any of the four small-scale geometry dimensions appears to be a suitable alternative to the full-size specimen when the full-size specimen cannot be produced. For 19.0- and 25.0-mm NMAS mixtures, the two small-scale geometries having a diameter of 50 mm appear to be suitable alternatives to the full-size specimen when the full-size specimen cannot be produced.

Characterization of Wyoming Hot Mix Asphalt with the Asphalt Pavement Analyzer

Characterization of Wyoming Hot Mix Asphalt with the Asphalt Pavement Analyzer PDF Author: George S. Huntington
Publisher:
ISBN:
Category : Asphalt
Languages : en
Pages : 36

Book Description
Two potential strength test, often referred to as "proof tests" are the Superpave shear tester and the asphalt pavement analyzer (APA). This report describes WYDOT's initial evaluation of the APA as a proof tester. The APA was used to evaluate the rutting resistance of field mixes. made from crushed limestone quarried in the Black Hills. Air void, asphalt grading, and cure times effects on APA rut depth were evaluated using regression analysis. The predominate predictor of rut depth was the asphalt high temperature grading.

Asphalt Mix Characterization Using Dynamic Modulus and APA Testing

Asphalt Mix Characterization Using Dynamic Modulus and APA Testing PDF Author:
Publisher:
ISBN:
Category : Asphalt
Languages : en
Pages : 116

Book Description


Characterizing and Predicting Dynamic Modulus of Hot-mix Asphalt for Mechanistic-empirical Design Guide

Characterizing and Predicting Dynamic Modulus of Hot-mix Asphalt for Mechanistic-empirical Design Guide PDF Author: Nam Hoai Tran
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 768

Book Description


8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials

8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials PDF Author: Francesco Canestrari
Publisher: Springer
ISBN: 9401773424
Category : Technology & Engineering
Languages : en
Pages : 1024

Book Description
This work presents the results of RILEM TC 237-SIB (Testing and characterization of sustainable innovative bituminous materials and systems). The papers have been selected for publication after a rigorous peer review process and will be an invaluable source to outline and clarify the main directions of present and future research and standardization for bituminous materials and pavements. The following topics are covered: - Characterization of binder-aggregate interaction - Innovative testing of bituminous binders, additives and modifiers - Durability and aging of asphalt pavements - Mixture design and compaction analysis - Environmentally sustainable materials and technologies - Advances in laboratory characterization of bituminous materials - Modeling of road materials and pavement performance prediction - Field measurement and in-situ characterization - Innovative materials for reinforcement and interlayer systems - Cracking and damage characterization of asphalt pavements - Recycling and re-use in road pavements This is the proceedings of the RILEM SIB2015 Symposium (Ancona, Italy, October 7-9, 2015).

A Manual for Design of Hot Mix Asphalt with Commentary

A Manual for Design of Hot Mix Asphalt with Commentary PDF Author:
Publisher: Transportation Research Board
ISBN: 0309155649
Category : Asphalt concrete
Languages : en
Pages : 285

Book Description


Testing and Characterization of Asphalt Materials and Pavement Structures

Testing and Characterization of Asphalt Materials and Pavement Structures PDF Author: Kun Zhang
Publisher: Springer
ISBN: 3319957899
Category : Science
Languages : en
Pages : 179

Book Description
This book presents new studies dealing with the attempts made by the scientists and practitioners to address contemporary issues in pavement engineering such as aging and modification of asphalt binders, performance evaluation of warm mix asphalt, and mechanical-based pavement structure analysis, etc.. Asphalt binder and mixture have been widely used to construct flexible pavements. Mechanical and Chemical characterizations of asphalt materials and integration of these properties into pavement structures and distresses analysis are of great importance to design a sustainable flexible pavement. This book includes discusses and new results dealing with these issues. Papers were selected from the 5th GeoChina International Conference 2018 – Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.

Performance Tests for Hot Mix Asphalt (HMA) Including Fundamental and Empirical Procedures

Performance Tests for Hot Mix Asphalt (HMA) Including Fundamental and Empirical Procedures PDF Author: Louay Nadhim Mohammad
Publisher: ASTM International
ISBN: 0803134959
Category : Anisotropy
Languages : en
Pages : 216

Book Description