Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests PDF full book. Access full book title Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests by M. Shabbir Hossain. Download full books in PDF and EPUB format.

Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests

Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests PDF Author: M. Shabbir Hossain
Publisher:
ISBN:
Category : Soils
Languages : en
Pages : 32

Book Description
In 2004, the Guide for the Mechanistic-Empirical Design of New & Rehabilitated Pavement Structures (MEPDG) was developed under NCHRP Project 1-37A to replace the currently used 1993 Guide for Design of Pavement Structures by the American Association of State Highway and Transportation Officials, which has an empirical approach. Implementation of the MEPDG requires the mechanistic characterization of pavement materials and the calibration of performance prediction models by the user agencies. The purpose of this study was (1) to determine the resilient modulus values for Virginia's subgrade soils for input into MEPDG design/analysis efforts, and (2) to investigate the possible correlation of the resilient modulus with other soil properties. Although the MEPDG provides default values and correlations for resilient modulus, they are based on a limited number of tests and may not be applicable for Virginia soils and aggregates. The possible correlation of the resilient modulus with other soil properties was investigated because such correlations could be used for smaller projects where costly and complex resilient modulus testing is not justified. More than 100 soil samples from all over Virginia representing every physiographic region were collected for resilient modulus, soil index properties, standard Proctor, and California Bearing Ratio testing. Resilient modulus values and regression coefficients (k-values) of constitutive models for resilient modulus for typical Virginia soils were successfully computed. There were no statistically significant correlations between the resilient modulus and all other test results, with the exception of those for the quick shear test, for which the correlation was very strong (R2 = 0.98). The study recommends that the Virginia Department of Transportation's Materials Division (1) implement resilient modulus testing for characterizing subgrade soils in MEPDG Level 1 pavement design/analysis, and (2) use the quick shear test to predict the resilient modulus values of fine soils using the relationships developed in this study for MEPDG Level 2 design/analysis

Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests

Characterization of Subgrade Resilient Modulus for Virginia Soils and Its Correlation with the Results of Other Soil Tests PDF Author: M. Shabbir Hossain
Publisher:
ISBN:
Category : Soils
Languages : en
Pages : 32

Book Description
In 2004, the Guide for the Mechanistic-Empirical Design of New & Rehabilitated Pavement Structures (MEPDG) was developed under NCHRP Project 1-37A to replace the currently used 1993 Guide for Design of Pavement Structures by the American Association of State Highway and Transportation Officials, which has an empirical approach. Implementation of the MEPDG requires the mechanistic characterization of pavement materials and the calibration of performance prediction models by the user agencies. The purpose of this study was (1) to determine the resilient modulus values for Virginia's subgrade soils for input into MEPDG design/analysis efforts, and (2) to investigate the possible correlation of the resilient modulus with other soil properties. Although the MEPDG provides default values and correlations for resilient modulus, they are based on a limited number of tests and may not be applicable for Virginia soils and aggregates. The possible correlation of the resilient modulus with other soil properties was investigated because such correlations could be used for smaller projects where costly and complex resilient modulus testing is not justified. More than 100 soil samples from all over Virginia representing every physiographic region were collected for resilient modulus, soil index properties, standard Proctor, and California Bearing Ratio testing. Resilient modulus values and regression coefficients (k-values) of constitutive models for resilient modulus for typical Virginia soils were successfully computed. There were no statistically significant correlations between the resilient modulus and all other test results, with the exception of those for the quick shear test, for which the correlation was very strong (R2 = 0.98). The study recommends that the Virginia Department of Transportation's Materials Division (1) implement resilient modulus testing for characterizing subgrade soils in MEPDG Level 1 pavement design/analysis, and (2) use the quick shear test to predict the resilient modulus values of fine soils using the relationships developed in this study for MEPDG Level 2 design/analysis

Characterization of Unbound Pavement Materials from Virginia Sources for Use in the New Mechanistic-empirical Pavement Design Procedure

Characterization of Unbound Pavement Materials from Virginia Sources for Use in the New Mechanistic-empirical Pavement Design Procedure PDF Author: M. Shabbir Hossain
Publisher:
ISBN:
Category : Aggregates (Building materials)
Languages : en
Pages : 0

Book Description
The implementation of mechanistic-empirical pavement design requires mechanistic characterization of pavement layer materials. The subgrade and base materials are used as unbound, and their characterization for Virginia sources was considered in this study as a supplement to a previous study by the Virginia Transportation Research Council. Resilient modulus tests were performed in accordance with AASHTO T 307 on fine and coarse soils along with base aggregates used in Virginia. The degree of saturation as determined by moisture content and density has shown significant influence on the resilient behavior of these unbound materials. The resilient modulus values, or k-values, are presented as reference for use by the Virginia Department of Transportation (VDOT). The results of other tests were analyzed for correlation with the results of the resilient modulus test to determine their use in estimating resilient modulus values. The results of the triaxial compression test, referred to as the quick shear test in AASHTO T 307, correlated favorably with the resilient modulus. Although the complexity of such a test is similar to that of the resilient modulus test for cohesionless coarse soil and base aggregate, fine cohesive soil can be tested with a simpler triaxial test: the unconfined compression test. In this study, a model was developed to estimate the resilient modulus of fine soil from the initial tangent modulus produced on a stress-strain diagram from an unconfined compression test. The following recommendations are made to VDOT's Materials Division: (1) implement the use of the resilient modulus test for pavement design along with the implementation of the MEPDG; (2) use the universal constitutive model recommended by the MEPDG to generate the k-values needed as input to MEPDG Level 1 design/analysis for resilient modulus calculation; (3) develop a database of resilient modulus values (or k-values), which could be used in MEPDG design/analysis if a reasonable material match were to be found; (4) use the initial tangent modulus from an unconfined compression test to predict the resilient modulus values of fine soils for MEPDG Level 2 input and the 1993 AASHTO design; and (5) continue to collect data for the unconfined compression test and update the prediction model for fine soil in collaboration with the Virginia Transportation Research Council. Implementing these recommendations would support and expedite the implementation efforts under way by VDOT to initiate the statewide use of the MEPDG. The use of the MEPDG is expected to improve VDOT's pavement design capability and should allow VDOT to design pavements with a longer service life and fewer maintenance needs and to predict maintenance and rehabilitation needs more accurately over the life of the pavement.

Determination of Resilient Modulus Values for Typical Plastic Soils in Wisconsin

Determination of Resilient Modulus Values for Typical Plastic Soils in Wisconsin PDF Author: Hani Hasan Titi
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 316

Book Description
The objectives of this research are to establish a resilient modulus test results database and to develop correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A laboratory testing program was conducted on representative Wisconsin fine-grained soils to evaluate their physical and compaction properties. The resilient modulus of the investigated soils was determined from the repeated load triaxial (RLT) test following the AASHTO T307 procedure. The laboratory testing program produced a high-quality and consistent test results database.

Simplification of Resilient Modulus Testing for Subgrades

Simplification of Resilient Modulus Testing for Subgrades PDF Author: Daehyeon Kim
Publisher:
ISBN: 9781622601875
Category :
Languages : en
Pages :

Book Description


Evaluation of In-Situ Stiffness of Subgrade by Resilient and FWD Modulus

Evaluation of In-Situ Stiffness of Subgrade by Resilient and FWD Modulus PDF Author: Daehyeon Kim
Publisher:
ISBN: 9781622600380
Category :
Languages : en
Pages :

Book Description


Resilient Modulus Properties of New Jersey Subgrade Soils

Resilient Modulus Properties of New Jersey Subgrade Soils PDF Author:
Publisher:
ISBN:
Category : Roads
Languages : en
Pages : 158

Book Description


Estimating Stiffness of Subgrade and Unbound Materials for Pavement Design

Estimating Stiffness of Subgrade and Unbound Materials for Pavement Design PDF Author: Anand J. Puppala
Publisher: Transportation Research Board
ISBN: 0309098114
Category : Technology & Engineering
Languages : en
Pages : 139

Book Description
At head of title: National Cooperative Highway Research Program.

Resilient Properties of Subgrade Soils

Resilient Properties of Subgrade Soils PDF Author: Marshall R. Thompson
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 82

Book Description


Resilient Modulus Prediction Employing Soil Index Properties

Resilient Modulus Prediction Employing Soil Index Properties PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 64

Book Description
Subgrade soil characterization in terms of Resilient Modulus (MR) has become crucial for pavement design. For a new design, MR values are generally obtained by conducting repeated load triaxial tests on reconstituted/undisturbed cylindrical specimens. Because the test is complex and time-consuming, in-situ tests would be desirable if reliable correlation equations could be established. Alternately, MR can be obtained from correlation equations involving stress state and soil physical properties. Several empirical equations have been suggested to estimate the resilient modulus. The main focus of this study is to substantiate the predictability of the existing equations and evaluate the feasibility of using one or more of those equations in predicting resilient modulus of Mississippi soils. This study also documents different soil index properties that influence resilient modulus. Correlation equations developed by the Long Term Pavement Performance (LTPP), Minnesota Road Research Project, Georgia DOT, Carmichael and Stuart, Drumm et al., Wyoming DOT, and Mississippi DOT are studied/analyzed in detail. Eight road (subgrade) sections from different districts were selected, and soils tested (TP 46 Protocol) for MR in the laboratory. Other routine laboratory tests were conducted to determine physical properties of the soil. Validity of the correlation equations are addressed by comparing measured MR to predicted MR. In addition, variations expected in the predicted MR due to inherent variability in soil properties is studied by the method of point estimates. The results suggest that LTPP equations are suited for purposes of predicting resilient modulus of Mississippi subgrade soils. For fine grain soils, even better predictions are realized with the Mississippi equation. A sensitivity study of those equations suggests that the top five soil index properties influencing MR include moisture content, degree of saturation, material passing #200 sieve, plasticity index and density.

Comparative Evaluation of Subgrade Resilient Modulus from Non-destructive, In-situ, and Laboratory Methods

Comparative Evaluation of Subgrade Resilient Modulus from Non-destructive, In-situ, and Laboratory Methods PDF Author:
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 96

Book Description
Field and laboratory testing programs were conducted to develop models that predict the resilient modulus of subgrade soils from the test results of DCP, CIMCPT, FWD, Dynaflect, and soil properties. The field testing program included DCP, CIMCPT, FWD, and Dynaflect testing, whereas the laboratory program included repeated load triaxial resilient modulus tests and physical properties and compaction tests. Nine overlay rehabilitation pavement projects in Louisiana were selected. A total of four soil types (A-4, A-6, A-7-5, and A-7-6) were considered at different moisture-dry unit weight levels. The results of the laboratory and field testing programs were analyzed and critically evaluated. A comprehensive statistical analysis was conducted on the collected data. The results showed a good agreement between the predicted and measured resilient modulus from the various field test methods considered. The DCP and CIMCPT models were enhanced when the soil moisture content and dry unit weight were incorporated. The results also showed that, among all back calculated FWD moduli, those back calculated using ELMOD 5.1.69 software had the best correlation with the measured Mr. Finally, the Mr values estimated using the approach currently adopted by the LADOTD were found to correlate poorly with the measured Mr values.