Characterization of Reinforced Fill Soil, Soil-reinforcement Interaction, and Internal Stability of Very Tall MSE Walls PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Characterization of Reinforced Fill Soil, Soil-reinforcement Interaction, and Internal Stability of Very Tall MSE Walls PDF full book. Access full book title Characterization of Reinforced Fill Soil, Soil-reinforcement Interaction, and Internal Stability of Very Tall MSE Walls by James J. Walters. Download full books in PDF and EPUB format.

Characterization of Reinforced Fill Soil, Soil-reinforcement Interaction, and Internal Stability of Very Tall MSE Walls

Characterization of Reinforced Fill Soil, Soil-reinforcement Interaction, and Internal Stability of Very Tall MSE Walls PDF Author: James J. Walters
Publisher:
ISBN:
Category : Retaining walls
Languages : en
Pages : 245

Book Description
In many geotechnical design situations involving tight right-of-way constraints, Mechanically Stabilized Earth (MSE) walls are often the most cost-effective and reliable earth retention technology among available alternatives. However, few well-documented case histories with detailed material testing, instrumentation programs and construction observation of performance are available in the literature. Despite the small number of case histories, empirical design methods are used in place of more theoretically-based methods. As a result, current design methods for MSE walls result in a large amount of inaccuracy, especially when their empirical calibration limits are exceeded. This study characterizes the constitutive behavior of a sandy gravel backfill soil and ribbed steel strip reinforcement material used in the construction of two very tall MSE walls constructed during the 3rd Runway Expansion Project at the Seattle-Tacoma International Airport (SeaTac). Tension testing was performed on coupons cut from the reinforcement material in order to measure its Young's modulus and yield strength. Consolidated drained triaxial strength testing was performed to measure the stress-strain behavior of the loose, medium dense, and densely-compacted backfill materials. Then the frictional interaction between the reinforcement and densely-compacted backfill soil was evaluated by performing twenty full-scale single-strip laboratory pullout tests. Using the results from the material testing and in-situ reinforcement strain measurements taken at the SeaTac MSE walls, the accuracy of four reinforcement load prediction methods was evaluated. The pullout test results were used to develop a backfill-specific design model, as well as being combined with other pullout test results for gravels reported in the literature to develop a global gravel design model for predicting peak reinforcement pullout resistances. These newly developed pullout design models were compared to the current AASHTO design model and found to produce much more accurate predictions of peak reinforcement pullout resistance. Walls designed and constructed with the kinds of backfill evaluated herein and with the new models generated will be more cost-effective than typically accepted design models.

Characterization of Reinforced Fill Soil, Soil-reinforcement Interaction, and Internal Stability of Very Tall MSE Walls

Characterization of Reinforced Fill Soil, Soil-reinforcement Interaction, and Internal Stability of Very Tall MSE Walls PDF Author: James J. Walters
Publisher:
ISBN:
Category : Retaining walls
Languages : en
Pages : 245

Book Description
In many geotechnical design situations involving tight right-of-way constraints, Mechanically Stabilized Earth (MSE) walls are often the most cost-effective and reliable earth retention technology among available alternatives. However, few well-documented case histories with detailed material testing, instrumentation programs and construction observation of performance are available in the literature. Despite the small number of case histories, empirical design methods are used in place of more theoretically-based methods. As a result, current design methods for MSE walls result in a large amount of inaccuracy, especially when their empirical calibration limits are exceeded. This study characterizes the constitutive behavior of a sandy gravel backfill soil and ribbed steel strip reinforcement material used in the construction of two very tall MSE walls constructed during the 3rd Runway Expansion Project at the Seattle-Tacoma International Airport (SeaTac). Tension testing was performed on coupons cut from the reinforcement material in order to measure its Young's modulus and yield strength. Consolidated drained triaxial strength testing was performed to measure the stress-strain behavior of the loose, medium dense, and densely-compacted backfill materials. Then the frictional interaction between the reinforcement and densely-compacted backfill soil was evaluated by performing twenty full-scale single-strip laboratory pullout tests. Using the results from the material testing and in-situ reinforcement strain measurements taken at the SeaTac MSE walls, the accuracy of four reinforcement load prediction methods was evaluated. The pullout test results were used to develop a backfill-specific design model, as well as being combined with other pullout test results for gravels reported in the literature to develop a global gravel design model for predicting peak reinforcement pullout resistances. These newly developed pullout design models were compared to the current AASHTO design model and found to produce much more accurate predictions of peak reinforcement pullout resistance. Walls designed and constructed with the kinds of backfill evaluated herein and with the new models generated will be more cost-effective than typically accepted design models.

An Experimental and Numerical Investigation of Tall Mechanically Stabilized Earth Walls

An Experimental and Numerical Investigation of Tall Mechanically Stabilized Earth Walls PDF Author: Andrew W. Strahler
Publisher:
ISBN:
Category : Retaining walls
Languages : en
Pages : 395

Book Description
The implementation and construction of Mechanically Stabilized Earth (MSE) walls has undergone substantial expansions in recent years, owing to its relatively low cost, ease of construction, and high efficiency compared to conventional retaining methods. As a result, MSE walls are being constructed to greater heights with complex features (e.g. multiple tiers, equivalent batter angles, close reinforcement spacing) even though impacts on wall response associated with these characteristics are not well understood. Available methods to predict wall responses are limited to empirical databases of single tiered walls less than 20 m and designers are left to complex finite element modelling to estimate the behavior of tall walls (walls with heights greater than 20 m). The current study aims to provide practitioners with a better understanding of the working stress behavior of tall MSE walls during and after construction through the use of a calibrated numerical model that incorporates pressure dependent soil, panel-soil interaction, non-linear soil reinforcement interaction, facing rigidity, foundation stiffness, and compaction stresses. First, an extensive laboratory investigation is conducted to characterize the plane strain and three dimensional stress-strain and stress-dilatancy response of a well-graded gravelly soil. Laboratory pullout tests are performed to characterize the influence of reinforcement spacing on load-displacement response. Results from the high quality laboratory investigations are used to calibrate specific numerical elements in FLAC (e.g. reinforcement-soil interface, facing-soil interface, soil constitutive response) incorporating pressure dependent constitutive responses. A numerical model representing a 46 m tall MSE wall is developed in FLAC, incorporating calibrated element parameters. Measurements made during the construction of a 46 m tall MSE wall are used to establish those factors within the model that most accurately simulate the observed wall performance. Results from a geometric parametric study conducted to assess the influence of boundary conditions on wall response are presented, focusing on impacts associated with tier height, tier offset, and wall height. The synthesis of the results from the geometric parametric study are used to establish a more thorough understanding of wall response, with specific emphasis on wall displacements and reinforcement strains.

Evaluation of the Green Terramesh Reinforced Slope System

Evaluation of the Green Terramesh Reinforced Slope System PDF Author: Highway Innovative Technology Evaluation Center (U.S.)
Publisher: ASCE Publications
ISBN: 9780784475430
Category : Technology & Engineering
Languages : en
Pages : 94

Book Description


Craig's Soil Mechanics, Seventh Edition

Craig's Soil Mechanics, Seventh Edition PDF Author: R.F. Craig
Publisher: CRC Press
ISBN: 9780415327022
Category : Technology & Engineering
Languages : en
Pages : 472

Book Description
This seventh edition of Soil Mechanics, widely praised for its clarity, depth of explanation and extensive coverage, presents the fundamental principles of soil mechanics and illustrates how they are applied in practical situations. Worked examples throughout the book reinforce the explanations and a range of problems for the reader to solve provide further learning opportunities.

Geosynthetic Reinforced Soil (GRS) Walls

Geosynthetic Reinforced Soil (GRS) Walls PDF Author: Jonathan T. H. Wu
Publisher: John Wiley & Sons
ISBN: 1119375843
Category : Technology & Engineering
Languages : en
Pages : 414

Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.

Craig's Soil Mechanics

Craig's Soil Mechanics PDF Author: Jonathan Knappett
Publisher: CRC Press
ISBN: 0203865243
Category : Technology & Engineering
Languages : en
Pages : 570

Book Description
Now in its eighth edition, this bestselling text continues to blend clarity of explanation with depth of coverage to present students with the fundamental principles of soil mechanics. From the foundations of the subject through to its application in practice, Craig‘s Soil Mechanics provides an indispensable companion to undergraduate courses and b

MSE Wall and Reinforcement Testing at MUS-16-7.16 Bridge Site

MSE Wall and Reinforcement Testing at MUS-16-7.16 Bridge Site PDF Author: Robert Y. Liang
Publisher:
ISBN:
Category : Reinforced soils
Languages : en
Pages : 644

Book Description


Earth Reinforcement and Soil Structures

Earth Reinforcement and Soil Structures PDF Author: Colin J F P Jones
Publisher: Elsevier
ISBN: 148310446X
Category : Technology & Engineering
Languages : en
Pages : 211

Book Description
Earth Reinforcement and Soil Structures provides a coverage of the basic aspects of reinforced soil. The book is comprised of 12 chapters that cover the theoretical elements up to the practical applications. The first two chapters provide the introduction and historical review of the subject of reinforced soil. The third chapter presents a catalogue of some of the application areas for the use of earth reinforcement, while the fourth chapter covers the theoretical concepts. The next six chapters deal with the practical aspects of earth reinforcements, such as design, construction, costs, and durability. The remaining two chapters provide some worked examples and discuss the developments in earth reinforcement, respectively. The text will be of great use to undergraduate students of civil engineering and other related fields.

Improvement Techniques of Soft Ground in Subsiding and Lowland Environment

Improvement Techniques of Soft Ground in Subsiding and Lowland Environment PDF Author: M.C. Alfaro
Publisher: CRC Press
ISBN: 9789054101536
Category : Nature
Languages : en
Pages : 236

Book Description
This text outlines the problems commonly encountered during infrastructure constructions on soft and subsiding ground in lowland environments, and their solutions in terms of soil/ground improvement techniques.

Proceedings of SECON’21

Proceedings of SECON’21 PDF Author: Giuseppe Carlo Marano
Publisher: Springer Nature
ISBN: 3030803120
Category : Technology & Engineering
Languages : en
Pages : 1127

Book Description
This book gathers peer-reviewed contributions presented at the International Conference on Structural Engineering and Construction Management (SECON’21), held on 12-15 May 2021. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.