Author: Jay Flanz
Publisher: CRC Press
ISBN: 1000528065
Category : Science
Languages : en
Pages : 492
Book Description
The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case, it is imperative to understand what clinical parameters affect the safety of a treatment and then determine how the technology can affect those parameters. This book provides a practical introduction to particle therapy. It provides a thorough introduction to the technological tools and their applications and then details the components that are needed to implement them. It explains the foundations of beam production and beam delivery that serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation, including how safety and quality are considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals. Particle Therapy Technology for Safe Treatment will be a useful resource for professionals in the field of particle therapy in addition to biomedical engineers and practitioners in the field of beam physics. It can also be used as a textbook for graduate medical physics and beam physics courses. Key Features Presents a practical and accessible journey from application requirements to technical solutions Provides a pedagogic treatment of the underlying technology Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system Author Bio After receiving his PhD in nuclear physics, Dr. Jacob Flanz was the Accelerator Physics Group leader and Principal Research Scientist at the Massachusetts Institute of Technology (MIT), USA, where he designed the recirculator and the GeV stretcher/storage ring. He joined Massachusetts General Hospital (MGH) and Harvard and became project and technical director of proton therapy, with responsibility for specifications, integration, and commissioning ensuring safe clinical performance. He invented the universal nozzle and led the design and implementation of beam scanning at MGH in 2008, including quality assurance. Dr. Flanz has been involved in several FDA applications for particle therapy. He developed and taught the US Particle Accelerator School course "Medical Applications of Accelerators and Beams." He was cochair of education and is currently the president of the Particle Therapy Co-Operative Group. Exercise solutions to accompany this book can be accessed via the 'Instructor Resources' tab on the book webpage.
Particle Therapy Technology for Safe Treatment
Author: Jay Flanz
Publisher: CRC Press
ISBN: 1000528065
Category : Science
Languages : en
Pages : 492
Book Description
The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case, it is imperative to understand what clinical parameters affect the safety of a treatment and then determine how the technology can affect those parameters. This book provides a practical introduction to particle therapy. It provides a thorough introduction to the technological tools and their applications and then details the components that are needed to implement them. It explains the foundations of beam production and beam delivery that serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation, including how safety and quality are considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals. Particle Therapy Technology for Safe Treatment will be a useful resource for professionals in the field of particle therapy in addition to biomedical engineers and practitioners in the field of beam physics. It can also be used as a textbook for graduate medical physics and beam physics courses. Key Features Presents a practical and accessible journey from application requirements to technical solutions Provides a pedagogic treatment of the underlying technology Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system Author Bio After receiving his PhD in nuclear physics, Dr. Jacob Flanz was the Accelerator Physics Group leader and Principal Research Scientist at the Massachusetts Institute of Technology (MIT), USA, where he designed the recirculator and the GeV stretcher/storage ring. He joined Massachusetts General Hospital (MGH) and Harvard and became project and technical director of proton therapy, with responsibility for specifications, integration, and commissioning ensuring safe clinical performance. He invented the universal nozzle and led the design and implementation of beam scanning at MGH in 2008, including quality assurance. Dr. Flanz has been involved in several FDA applications for particle therapy. He developed and taught the US Particle Accelerator School course "Medical Applications of Accelerators and Beams." He was cochair of education and is currently the president of the Particle Therapy Co-Operative Group. Exercise solutions to accompany this book can be accessed via the 'Instructor Resources' tab on the book webpage.
Publisher: CRC Press
ISBN: 1000528065
Category : Science
Languages : en
Pages : 492
Book Description
The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case, it is imperative to understand what clinical parameters affect the safety of a treatment and then determine how the technology can affect those parameters. This book provides a practical introduction to particle therapy. It provides a thorough introduction to the technological tools and their applications and then details the components that are needed to implement them. It explains the foundations of beam production and beam delivery that serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation, including how safety and quality are considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals. Particle Therapy Technology for Safe Treatment will be a useful resource for professionals in the field of particle therapy in addition to biomedical engineers and practitioners in the field of beam physics. It can also be used as a textbook for graduate medical physics and beam physics courses. Key Features Presents a practical and accessible journey from application requirements to technical solutions Provides a pedagogic treatment of the underlying technology Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system Author Bio After receiving his PhD in nuclear physics, Dr. Jacob Flanz was the Accelerator Physics Group leader and Principal Research Scientist at the Massachusetts Institute of Technology (MIT), USA, where he designed the recirculator and the GeV stretcher/storage ring. He joined Massachusetts General Hospital (MGH) and Harvard and became project and technical director of proton therapy, with responsibility for specifications, integration, and commissioning ensuring safe clinical performance. He invented the universal nozzle and led the design and implementation of beam scanning at MGH in 2008, including quality assurance. Dr. Flanz has been involved in several FDA applications for particle therapy. He developed and taught the US Particle Accelerator School course "Medical Applications of Accelerators and Beams." He was cochair of education and is currently the president of the Particle Therapy Co-Operative Group. Exercise solutions to accompany this book can be accessed via the 'Instructor Resources' tab on the book webpage.
Measurement and Control of Charged Particle Beams
Author: Michiko G. Minty
Publisher: Springer Science & Business Media
ISBN: 366208581X
Category : Science
Languages : en
Pages : 364
Book Description
From the reviews: "This book is a very welcome and valuable addition to the accelerator literature. As noted by the authors, there is relatively little material in the book specifically for low-energy machines, but industrial users may still find it useful to read." Cern Courier
Publisher: Springer Science & Business Media
ISBN: 366208581X
Category : Science
Languages : en
Pages : 364
Book Description
From the reviews: "This book is a very welcome and valuable addition to the accelerator literature. As noted by the authors, there is relatively little material in the book specifically for low-energy machines, but industrial users may still find it useful to read." Cern Courier
Field Computation for Accelerator Magnets
Author: Stephan Russenschuck
Publisher: John Wiley & Sons
ISBN: 3527635475
Category : Science
Languages : en
Pages : 778
Book Description
Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.
Publisher: John Wiley & Sons
ISBN: 3527635475
Category : Science
Languages : en
Pages : 778
Book Description
Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.
An Introduction to Beam Physics
Author: Martin Berz
Publisher: CRC Press
ISBN: 0750302631
Category : Science
Languages : en
Pages : 326
Book Description
The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, highlighting important advances through the eyes of their developers using their original drawings. The book then presents concepts of linear beam optics, transfer matrices, the general equations of motion, and the main techniques used for single- and multi-pass systems. Some advanced nonlinear topics, including the computation of aberrations and a study of resonances, round out the presentation.
Publisher: CRC Press
ISBN: 0750302631
Category : Science
Languages : en
Pages : 326
Book Description
The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, highlighting important advances through the eyes of their developers using their original drawings. The book then presents concepts of linear beam optics, transfer matrices, the general equations of motion, and the main techniques used for single- and multi-pass systems. Some advanced nonlinear topics, including the computation of aberrations and a study of resonances, round out the presentation.
Synchrotron Radiation and Free-Electron Lasers
Author: Kwang-Je Kim
Publisher: Cambridge University Press
ISBN: 1107162610
Category : Science
Languages : en
Pages : 299
Book Description
Preliminary concepts -- Synchrotron radiation -- Basic FEL physics -- 1D FEL analysis -- 3D FEL analysis -- Harmonic generation in high-gain FELs -- FEL oscillators and coherent hard X-rays -- Practical considerations and experimental results for high-gain FELs
Publisher: Cambridge University Press
ISBN: 1107162610
Category : Science
Languages : en
Pages : 299
Book Description
Preliminary concepts -- Synchrotron radiation -- Basic FEL physics -- 1D FEL analysis -- 3D FEL analysis -- Harmonic generation in high-gain FELs -- FEL oscillators and coherent hard X-rays -- Practical considerations and experimental results for high-gain FELs
Hands-On Accelerator Physics Using MATLAB®
Author: Volker Ziemann
Publisher: CRC Press
ISBN: 0429957467
Category : Science
Languages : en
Pages : 357
Book Description
Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website MATLAB live-scripts to accompany the book can be found here: https://ziemann.web.cern.ch/ziemann/mybooks/mlx/
Publisher: CRC Press
ISBN: 0429957467
Category : Science
Languages : en
Pages : 357
Book Description
Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website MATLAB live-scripts to accompany the book can be found here: https://ziemann.web.cern.ch/ziemann/mybooks/mlx/
Safety for Particle Accelerators
Author: Thomas Otto
Publisher: Springer Nature
ISBN: 3030570312
Category : Science
Languages : en
Pages : 157
Book Description
The use of non-standard technologies such as superconductivity, cryogenics and radiofrequency pose challenges for the safe operation of accelerator facilities that cannot be addressed using only best practice from occupational safety in conventional industry. This book introduces readers to different occupational safety issues at accelerator facilities and is directed to managers, scientists, technical personnel and students working at current or future accelerator facilities. While the focus is on occupational safety – how to protect the people working at these facilities – the book also touches on “machine safety” – how to prevent accelerators from doing structural damage to themselves. This open access book offers a first introduction to safety at accelerator facilities. Presenting an overview of the safety-related aspects of the specific technologies employed in particle accelerators, it highlights the potential hazards at such facilities and current prevention and protection measures. It closes with a review of safety management and organization at accelerator facilities.
Publisher: Springer Nature
ISBN: 3030570312
Category : Science
Languages : en
Pages : 157
Book Description
The use of non-standard technologies such as superconductivity, cryogenics and radiofrequency pose challenges for the safe operation of accelerator facilities that cannot be addressed using only best practice from occupational safety in conventional industry. This book introduces readers to different occupational safety issues at accelerator facilities and is directed to managers, scientists, technical personnel and students working at current or future accelerator facilities. While the focus is on occupational safety – how to protect the people working at these facilities – the book also touches on “machine safety” – how to prevent accelerators from doing structural damage to themselves. This open access book offers a first introduction to safety at accelerator facilities. Presenting an overview of the safety-related aspects of the specific technologies employed in particle accelerators, it highlights the potential hazards at such facilities and current prevention and protection measures. It closes with a review of safety management and organization at accelerator facilities.
Particle Accelerators: From Big Bang Physics to Hadron Therapy
Author: Ugo Amaldi
Publisher: Springer
ISBN: 9783319088693
Category : Science
Languages : en
Pages : 0
Book Description
Rather than focusing on the contributions of theoretical physicists to the understanding of the subatomic world and of the beginning of the universe - as most popular science books on particle physics do - this book is different in that, firstly, the main focus is on machine inventors and builders and, secondly, particle accelerators are not only described as discovery tools but also for their contributions to tumour diagnosis and therapy. The characters of well-known (e.g. Ernest Lawrence) and mostly unknown actors (e.g. Nicholas Christofilos) are outlined, including many colourful quotations. The overall picture supports the author’s motto: “Physics is beautiful and useful”. Advance appraisal: “Accelerators go all the way from the unique and gargantuan Large Hadron Collider to thousands of smaller versions in hospitals and industry. Ugo Amaldi has experience across the range. He has worked at CERN and has for many years been driving the application of accelerators in medicine. This is a must-read introduction to this frontier of modern technology, written beautifully by a world expert.” Frank Close, Professor of Physics at Oxford University author of "The Infinity Puzzle" “This book should be read by school teachers and all those interested in the exploration of the microcosm and its relation to cosmology, and in the use of accelerators for medical applications. With a light hand and without formulae the autho r easily explains complicated matters, spicing up the text with amusing historical anecdotes. His reputation as an outstanding scientist in all the fields treated guarantees high standards.” Herwig Schopper, former CERN Director General author of "LEP - The Lord of the Collider Rings at CERN" “This book tells the story of modern physics with an unusual emphasis on the machine-builders who made it all possible, and their machines. Learning to accelerate particles has enabled physicists to probe the subatomic world and gain a deeper understanding of the cosmos. It has also brought numerous benefits to medicine, from the primitive X-ray machines of over a century ago to today's developments in hadron therapy for cancer. Amaldi tells this story in a most fascinating way.” Edward Witten, Professor of Mathematical Physics at the Institute for Advanced Study in Princeton; Fields Medal (1990)
Publisher: Springer
ISBN: 9783319088693
Category : Science
Languages : en
Pages : 0
Book Description
Rather than focusing on the contributions of theoretical physicists to the understanding of the subatomic world and of the beginning of the universe - as most popular science books on particle physics do - this book is different in that, firstly, the main focus is on machine inventors and builders and, secondly, particle accelerators are not only described as discovery tools but also for their contributions to tumour diagnosis and therapy. The characters of well-known (e.g. Ernest Lawrence) and mostly unknown actors (e.g. Nicholas Christofilos) are outlined, including many colourful quotations. The overall picture supports the author’s motto: “Physics is beautiful and useful”. Advance appraisal: “Accelerators go all the way from the unique and gargantuan Large Hadron Collider to thousands of smaller versions in hospitals and industry. Ugo Amaldi has experience across the range. He has worked at CERN and has for many years been driving the application of accelerators in medicine. This is a must-read introduction to this frontier of modern technology, written beautifully by a world expert.” Frank Close, Professor of Physics at Oxford University author of "The Infinity Puzzle" “This book should be read by school teachers and all those interested in the exploration of the microcosm and its relation to cosmology, and in the use of accelerators for medical applications. With a light hand and without formulae the autho r easily explains complicated matters, spicing up the text with amusing historical anecdotes. His reputation as an outstanding scientist in all the fields treated guarantees high standards.” Herwig Schopper, former CERN Director General author of "LEP - The Lord of the Collider Rings at CERN" “This book tells the story of modern physics with an unusual emphasis on the machine-builders who made it all possible, and their machines. Learning to accelerate particles has enabled physicists to probe the subatomic world and gain a deeper understanding of the cosmos. It has also brought numerous benefits to medicine, from the primitive X-ray machines of over a century ago to today's developments in hadron therapy for cancer. Amaldi tells this story in a most fascinating way.” Edward Witten, Professor of Mathematical Physics at the Institute for Advanced Study in Princeton; Fields Medal (1990)
An Introduction to Particle Accelerators
Author: Edward J. N. Wilson
Publisher: Clarendon Press
ISBN: 9780198508298
Category : Science
Languages : en
Pages : 276
Book Description
From the linear accelerators used for cancer therapy in hospitals, to the giant atom smashers at international laboratories, this book provides a simple introduction to particle accelerators.
Publisher: Clarendon Press
ISBN: 9780198508298
Category : Science
Languages : en
Pages : 276
Book Description
From the linear accelerators used for cancer therapy in hospitals, to the giant atom smashers at international laboratories, this book provides a simple introduction to particle accelerators.
Particle Physics: a Very Short Introduction
Author: Frank Close
Publisher: Oxford University Press
ISBN: 019287375X
Category : Science
Languages : en
Pages : 177
Book Description
Following the discovery of the Higgs boson, Frank Close has produced this major revision to his classic and compelling introduction to the fundamental particles that make up the universe.
Publisher: Oxford University Press
ISBN: 019287375X
Category : Science
Languages : en
Pages : 177
Book Description
Following the discovery of the Higgs boson, Frank Close has produced this major revision to his classic and compelling introduction to the fundamental particles that make up the universe.