Cerium Fluoride, a New Fast, Heavy Scintillator PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Cerium Fluoride, a New Fast, Heavy Scintillator PDF full book. Access full book title Cerium Fluoride, a New Fast, Heavy Scintillator by . Download full books in PDF and EPUB format.

Cerium Fluoride, a New Fast, Heavy Scintillator

Cerium Fluoride, a New Fast, Heavy Scintillator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We describe the scintillation properties of Cerium Fluoride (CeF3), a newly discovered, heavy (6.16 g/cm3), inorganic scintillator. Its fluorescence decay lifetime, measured with the delayed coincidence method, is described by a single exponential with a 27 /+-/ ns time constant. The emission spectrum peaks at a wavelength of 340 nm, and drops to less than 10% of its peak value at 315 nm and 460 nm. When a 1 cm optical quality cube of CeF3 is excited with 511 keV photons, a photopeak with a 20% full width at half maximum is observed at approximately half the light output of a Bismuth Germanate (BGO) crystal with similar geometry. We also present measurements of the decay time and light output of CeF3 doped with three rare-earth elements (Dy, Er, and Pr). The short fluorescence lifetime, high density, and reasonable light output of this new scintillator suggest that it would be useful for applications where high counting rates, good stopping power, and nanosecond timing are important, such as medical imaging and nuclear science. 5 refs., 6 figs., 1 tab.

Cerium Fluoride, a New Fast, Heavy Scintillator

Cerium Fluoride, a New Fast, Heavy Scintillator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We describe the scintillation properties of Cerium Fluoride (CeF3), a newly discovered, heavy (6.16 g/cm3), inorganic scintillator. Its fluorescence decay lifetime, measured with the delayed coincidence method, is described by a single exponential with a 27 /+-/ ns time constant. The emission spectrum peaks at a wavelength of 340 nm, and drops to less than 10% of its peak value at 315 nm and 460 nm. When a 1 cm optical quality cube of CeF3 is excited with 511 keV photons, a photopeak with a 20% full width at half maximum is observed at approximately half the light output of a Bismuth Germanate (BGO) crystal with similar geometry. We also present measurements of the decay time and light output of CeF3 doped with three rare-earth elements (Dy, Er, and Pr). The short fluorescence lifetime, high density, and reasonable light output of this new scintillator suggest that it would be useful for applications where high counting rates, good stopping power, and nanosecond timing are important, such as medical imaging and nuclear science. 5 refs., 6 figs., 1 tab.

Heavy Scintillators for Scientific and Industrial Applications

Heavy Scintillators for Scientific and Industrial Applications PDF Author: F. De Notaristefani
Publisher: Atlantica Séguier Frontières
ISBN: 9782863321287
Category : Science
Languages : en
Pages : 648

Book Description


Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors

Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors PDF Author: Boris Petrovich Sobolev
Publisher: Institut d'Estudis Catalans
ISBN: 9788472832619
Category : Crystal optics
Languages : en
Pages : 276

Book Description


Cerium Fluoride, a Highly Radiation-resistive Scintillator

Cerium Fluoride, a Highly Radiation-resistive Scintillator PDF Author: M. Kobayashi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Wide-Gap Luminescent Materials: Theory and Applications

Wide-Gap Luminescent Materials: Theory and Applications PDF Author: Stanley R. Rotman
Publisher: Springer Science & Business Media
ISBN: 146154100X
Category : Technology & Engineering
Languages : en
Pages : 376

Book Description
Electro-optic devices based on doped wide-band materials are present in industrial uses, in military applications and in everyday life. Whether one engages in laser surgery with a neodymium-Y AG laser or one communicates overseas using optical fibers, the development of these materials is both scientifically and commercially of great interest. Much of the most innovative work has been done in the last 15 years in this area. A minor revolution in optical fiber communications has occurred with the development of erbium-doped fiber amplifiers. Solid-state laser development shifted into high-gear with the theoretical and experimental study of doubly-doped garnet lasers. Recent developments on semiconductor laser arrays are making diode pumped solid-state lasers commercially feasible. The purpose of this book is to detail these developments and to point out that many of the same underlying physical processes control advances in several diverse applications. For example, the basic science of energy transfer will be discussed by Zharikov et al. and Rotman for energy transfer and dopant-defect interactions, respectively; it will also be crucial in understanding cerium-doped scintilla tors, neodymium-chromium lasers, and up-conversion fiber lasers. As another example, phonon-induced non-radiative relaxation will appear in every chapter in this book.

Calorimetry In High Energy Physics - Proceedings Of The Fifth International Conference

Calorimetry In High Energy Physics - Proceedings Of The Fifth International Conference PDF Author: Howard Gordon
Publisher: World Scientific
ISBN: 9814548766
Category :
Languages : en
Pages : 544

Book Description
The Fifth International Conference on Calorimetry in High Energy Physics was held Sept. 25 - Oct. 1, 1994 at Brookhaven National Laboratory. The results presented show that calorimetry is a key element in the experiments at the frontier. As these experiments evolve, there are new challenges for calorimetry in terms of performance in energy and position resolution at ever increasing rates. The proceedings document the state-of-the-art in calorimetry.

Characterization of Cerium Fluoride Nanocomposite Scintillators

Characterization of Cerium Fluoride Nanocomposite Scintillators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF3) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 518

Book Description


Phosphors for Radiation Detectors

Phosphors for Radiation Detectors PDF Author: Takayuki Yanagida
Publisher: John Wiley & Sons
ISBN: 1119583381
Category : Technology & Engineering
Languages : en
Pages : 593

Book Description
Phosphors for Radiation Detector Phosphors for Radiation Detectors Discover a comprehensive overview of luminescence phosphors for radiation detection In Phosphors for Radiation Detection, accomplished researchers Takayuki Yanagida and Masanori Koshimizu deliver a state-of-the-art exploration of the use of phosphors in radiation detection. The internationally recognized contributors discuss the fundamental physics and detector functions associated with the technology with a focus on real-world applications. The book discusses all forms of luminescence phosphors for radiation detection used in a variety of fields, including medicine, security, resource exploration, environmental monitoring, and high energy physics. Readers will discover discussions of dosimeter materials, including thermally stimulated luminescent materials, optically stimulated luminescent materials, and radiophotoluminescence materials. The book also covers transparent ceramics and glasses and a broad range of devices used in this area. Phosphors for Radiation Detection also includes: Thorough introductions to ionizing radiation induced luminescence, organic scintillators, and inorganic oxide scintillators Comprehensive explorations of luminescent materials, including discussions of materials synthesis and their use in gamma-ray, neutron, and charged particle detection Practical discussions of semiconductor scintillators, including treatments of organic-inorganic layered perovskite materials for scintillation detectors In-depth examinations of thermally stimulated luminescent materials, including discussions of the dosimetric properties for photons, charged particles, and neutrons Relevant for research physicists, materials scientists, and electrical engineers, Phosphors for Radiation Detection is an also an indispensable resource for postgraduate and senior undergraduate students working in detection physics.

Cancer Nanotheranostics: What Have We Learned So Far?

Cancer Nanotheranostics: What Have We Learned So Far? PDF Author: João Conde
Publisher: Frontiers Media SA
ISBN: 288919776X
Category : Cancer
Languages : en
Pages : 130

Book Description
After a quarter of century of rapid technological advances, research has revealed the complexity of cancer, a disease intimately related to the dynamic transformation of the genome. However, the full understanding of the molecular onset of this disease is still far from achieved and the search for mechanisms of treatment will follow closely. It is here that Nanotechnology enters the fray offering a wealth of tools to diagnose and treat cancer. In fact, the National Cancer Institute predicts that over the next years, nanotechnology will result in important advances in early detection, molecular imaging, targeted and multifunctional therapeutics, prevention and control of cancer. Nanotechnology offers numerous tools to diagnose and treat cancer, such as new imaging agents, multifunctional devices capable of overcome biological barriers to deliver therapeutic agents directly to cells and tissues involved in cancer growth and metastasis, and devices capable of predicting molecular changes to prevent action against precancerous cells. Nanomaterials-based delivery systems in Theranostics (Diagnostics & Therapy) provide better penetration of therapeutic and diagnostic substances within the body at a reduced risk in comparison to conventional therapies. At the present time, there is a growing need to enhance the capability of theranostics procedures where nanomaterials-based sensors may provide for the simultaneous detection of several gene-associated conditions and nanodevices with the ability to monitor real-time drug action. These innovative multifunctional nanocarriers for cancer theranostics may allow the development of diagnostics systems such as colorimetric and immunoassays, and in therapy approaches through gene therapy, drug delivery and tumor targeting systems in cancer. Some of the thousands and thousands of published nanosystems so far will most likely revolutionize our understanding of biological mechanisms and push forward the clinical practice through their integration in future diagnostics platforms. Nevertheless, despite the significant efforts towards the use of nanomaterials in biologically relevant research, more in vivo studies are needed to assess the applicability of these materials as delivery agents. In fact, only a few went through feasible clinical trials. Nanomaterials have to serve as the norm rather than an exception in the future conventional cancer treatments. Future in vivo work will need to carefully consider the correct choice of chemical modifications to incorporate into the multifunctional nanocarriers to avoid activation off-target, side effects and toxicity. Moreover the majority of studies on nanomaterials do not consider the final application to guide the design of nanomaterial. Instead, the focus is predominantly on engineering materials with specific physical or chemical properties. It is imperative to learn how advances in nanosystem’s capabilities are being used to identify new diagnostic and therapy tools driving the development of personalized medicine in oncology; discover how integrating cancer research and nanotechnology modeling can help patient diagnosis and treatment; recognize how to translate nanotheranostics data into an actionable clinical strategy; discuss with industry leaders how nanotheranostics is evolving and what the impact is on current research efforts; and last but not least, learn what approaches are proving fruitful in turning promising clinical data into treatment realities.