Cement-Based Materials for Nuclear Waste Storage PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Cement-Based Materials for Nuclear Waste Storage PDF full book. Access full book title Cement-Based Materials for Nuclear Waste Storage by Florence Bart. Download full books in PDF and EPUB format.

Cement-Based Materials for Nuclear Waste Storage

Cement-Based Materials for Nuclear Waste Storage PDF Author: Florence Bart
Publisher: Springer Science & Business Media
ISBN: 1461434459
Category : Technology & Engineering
Languages : en
Pages : 266

Book Description
As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes. Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers.

Cement-Based Materials for Nuclear Waste Storage

Cement-Based Materials for Nuclear Waste Storage PDF Author: Florence Bart
Publisher: Springer Science & Business Media
ISBN: 1461434459
Category : Technology & Engineering
Languages : en
Pages : 266

Book Description
As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes. Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers.

Cementitious Materials for Nuclear Waste Immobilization

Cementitious Materials for Nuclear Waste Immobilization PDF Author: Rehab O. Abdel Rahman
Publisher: John Wiley & Sons
ISBN: 1118512006
Category : Science
Languages : en
Pages : 245

Book Description
Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.

Mechanisms of Chemical Degradation of Cement-based Systems

Mechanisms of Chemical Degradation of Cement-based Systems PDF Author: K.L. Scrivener
Publisher: CRC Press
ISBN: 1482294958
Category : Architecture
Languages : en
Pages : 470

Book Description
Deterioration of cement-based materials is a continuing problem, as it results in the substantial shortening of the lives of conventional concrete structures. The main costs result from poor performance and the need for early repair. With more advanced applications, where very long service lives are essential, such as the storage of nuclear waste,

Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies

Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies PDF Author: Rehab O. Abdel Rahman
Publisher: Woodhead Publishing
ISBN: 0128183292
Category : Technology & Engineering
Languages : en
Pages : 676

Book Description
Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies, edited by Dr. Rahman and Dr. Ojovan, presents the latest knowledge and research on the management of cementitious systems within nuclear power plants. The book covers aging, development and updates on regulatory frameworks on a global scale, the development of cementitious systems for the immobilization of problematic wastes, and the decommissioning and decontamination of complex cementitious systems. The book's editors and their team of experts combine their practical knowledge to provide the reader with a thorough understanding on the sustainability of lifecycle management of cementitious systems within the nuclear industry. Sections provide a comparative tool that presents national regulations concerning cementitious systems within nuclear power plants, check international and national evaluation results of the sustainability of different systems, help in the development of performance test procedures, and provide a guide on aging nuclear power plants and the long-term behavior of these systems in active and passive safety environments. Presents the latest information on the behavior of different cementitious systems used in the nuclear industry in one comprehensive resource Includes scientific justifications of system behavior during the design, operation, maintenance and decommissioning phases Aids the reader in the development of evaluation tests for problematic wastes

Materials for Nuclear Waste Immobilization

Materials for Nuclear Waste Immobilization PDF Author: Michael I. Ojovan
Publisher: MDPI
ISBN: 3039218468
Category : Technology & Engineering
Languages : en
Pages : 220

Book Description
The book outlines recent advances in nuclear wasteform materials including glasses, ceramics and cements and spent nuclear fuel. It focuses on durability aspects and contains data on performance of nuclear wasteforms as well as expected behavior in a disposal environment.

Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes

Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes PDF Author: Roger D. Spence
Publisher: CRC Press
ISBN: 142003278X
Category : Science
Languages : en
Pages : 392

Book Description
The development of stabilization and solidification techniques in the field of waste treatment reflects the efforts to better protect human health and the environment with modern advances in materials and technology. Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes provides comprehensive information including case studie

An Introduction to Nuclear Waste Immobilisation

An Introduction to Nuclear Waste Immobilisation PDF Author: Michael I. Ojovan
Publisher: Elsevier
ISBN: 0080455719
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in 'An Introduction to Nuclear Waste Immobilisation' cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies. * Each chapter focuses on a different matrix used in nuclear waste immobilisation: Cement, bitumen, glass and new materials. * Keeps the most important issues surrounding nuclear waste – such as treatment schemes and technologies, and disposal - at the forefront.

Carbonation Kinetics of Cementitious Materials Used in the Geological Disposal of Radioactive Waste

Carbonation Kinetics of Cementitious Materials Used in the Geological Disposal of Radioactive Waste PDF Author: J. Sun
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The use of cement based materials could be widespread in the long term management of radioactive materials in the United Kingdom. In the Geological Disposal Concepts proposed by the Radioactive Waste Management Directorate of the Nuclear Decommissioning Authority (NDA), several cement based materials are used in the long-term management of intermediate-level wastes. Much of the waste will be immobilised within stainless steel containers using cement grouts based on ordinary Portland cement (OPC) blended with blast furnace slag (BFS) or pulverised fuel ash (PFA). The resulting waste packages will be placed underground in a Geological Disposal Facility (or Repository) after a period of storage at the waste producers' sites. The repository will then be filled with cement based backfill. The encapsulation grouts and the backfill materials will perform as both a physical barrier and chemical barrier for confining the radioactive wastes. During storage and disposal, some wastes may generate carbon dioxide from the degradation of organic materials and this will react with the cement based materials. Therefore, carbonation of the cementitious encapsulation grouts and backfill materials is of interest because of the resulting changes to their physical and chemical properties and also because of its ability to remove carbon-14 labelled carbon dioxide from the gas phase. It is also important to understand the reaction kinetics under a range of conditions, due to the long-term nature of storage and disposal. In this work, the carbonation progress of one backfill material and of two encapsulation grouts used in the UK has been studied in batch reactors. These materials are known as Nirex Reference Vault Backfill (NRVB), 3:1 PFA/OPC and 3:1 BFS/OPC. Based on the single dimensional carbonation experiments, fundamental parameters affecting the rate of carbonation were investigated and the carbon dioxide uptake capacity of each material was determined. For these three materials, an increase in relative humidity (75% to 100%) decreases the carbonation rate. A higher reaction pressure can facilitate the carbonation, but its effect was less obvious than the effect of relative humidity. The progression of the carbonation fronts have also been observed by various techniques and the shape of carbonation front was proved to be influenced by the relative humidity. Special attention was given to the modelling of the kinetics and mechanism of the carbonation reaction of these materials. This work provides fundamental understanding of the carbonation reaction of NRVB, 3:1 PFA/OPC and 3:1 BFS/OPC of relevance to the future optimization of a geological disposal facility in the UK and to assessments of the performance of such a facility.

An Introduction to Nuclear Waste Immobilisation

An Introduction to Nuclear Waste Immobilisation PDF Author: Michael I Ojovan
Publisher: Elsevier
ISBN: 9780080993928
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Drawing on the authors' extensive experience in the processing and disposal of waste, An Introduction to Nuclear Waste Immobilisation, Second Edition examines the gamut of nuclear waste issues from the natural level of radionuclides in the environment to geological disposal of waste-forms and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices such as bitumen. The final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of the resources needed to understand and correctly immobilize nuclear waste.

Cementitious Materials for Nuclear Waste Immobilization

Cementitious Materials for Nuclear Waste Immobilization PDF Author: Rehab O. Abdel Rahman
Publisher: John Wiley & Sons
ISBN: 1118511972
Category : Science
Languages : en
Pages : 245

Book Description
Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.