Author: Joachim Hilgert
Publisher:
ISBN: 9780125254304
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book introduces researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered "standard" by specialists have not been widely published. This book brings this information to students and researchers in geometry and analysis of causal symmetric spaces. During the last several years, a fairly complete structure theory of irreducible causal symmetric spaces has emerged. This book is the first to present this theory with exhaustive proofs. The final chapters provide an introduction to the applications of this topic to harmonic analysis.
Causal Symmetric Spaces
Author: Gestur Olafsson
Publisher: Academic Press
ISBN: 0080528724
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Publisher: Academic Press
ISBN: 0080528724
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Causal Symmetric Spaces
Author: Joachim Hilgert
Publisher:
ISBN: 9780125254304
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book introduces researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered "standard" by specialists have not been widely published. This book brings this information to students and researchers in geometry and analysis of causal symmetric spaces. During the last several years, a fairly complete structure theory of irreducible causal symmetric spaces has emerged. This book is the first to present this theory with exhaustive proofs. The final chapters provide an introduction to the applications of this topic to harmonic analysis.
Publisher:
ISBN: 9780125254304
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book introduces researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered "standard" by specialists have not been widely published. This book brings this information to students and researchers in geometry and analysis of causal symmetric spaces. During the last several years, a fairly complete structure theory of irreducible causal symmetric spaces has emerged. This book is the first to present this theory with exhaustive proofs. The final chapters provide an introduction to the applications of this topic to harmonic analysis.
Lie Groups and Symmetric Spaces
Author: Semen Grigorʹevich Gindikin
Publisher: American Mathematical Soc.
ISBN: 9780821834725
Category : Geometry, Differential
Languages : en
Pages : 372
Book Description
The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.
Publisher: American Mathematical Soc.
ISBN: 9780821834725
Category : Geometry, Differential
Languages : en
Pages : 372
Book Description
The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.
Causal Symmetric Spaces
Representation Theory and Harmonic Analysis on Symmetric Spaces
Author: Jens Gerlach Christensen
Publisher: American Mathematical Soc.
ISBN: 1470440709
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis, in honor of Gestur Ólafsson's 65th birthday, held on January 4, 2017, in Atlanta, Georgia. The articles in this volume provide fresh perspectives on many different directions within harmonic analysis, highlighting the connections between harmonic analysis and the areas of integral geometry, complex analysis, operator algebras, Lie algebras, special functions, and differential operators. The breadth of contributions highlights the diversity of current research in harmonic analysis and shows that it continues to be a vibrant and fruitful field of inquiry.
Publisher: American Mathematical Soc.
ISBN: 1470440709
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis, in honor of Gestur Ólafsson's 65th birthday, held on January 4, 2017, in Atlanta, Georgia. The articles in this volume provide fresh perspectives on many different directions within harmonic analysis, highlighting the connections between harmonic analysis and the areas of integral geometry, complex analysis, operator algebras, Lie algebras, special functions, and differential operators. The breadth of contributions highlights the diversity of current research in harmonic analysis and shows that it continues to be a vibrant and fruitful field of inquiry.
Semigroups in Algebra, Geometry and Analysis
Author: Karl H. Hofmann
Publisher: Walter de Gruyter
ISBN: 3110885581
Category : Mathematics
Languages : en
Pages : 385
Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Publisher: Walter de Gruyter
ISBN: 3110885581
Category : Mathematics
Languages : en
Pages : 385
Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Symmetry, Causality, Mind
Author: Michael Leyton
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.
The Geometry of Jordan and Lie Structures
Author: Wolfgang Bertram
Publisher: Springer
ISBN: 3540444580
Category : Mathematics
Languages : en
Pages : 285
Book Description
The geometry of Jordan and Lie structures tries to answer the following question: what is the integrated, or geometric, version of real Jordan algebras, - triple systems and - pairs? Lie theory shows the way one has to go: Lie groups and symmetric spaces are the geometric version of Lie algebras and Lie triple systems. It turns out that both geometries are closely related via a functor between them, called the Jordan-Lie functor, which is constructed in this book. The reader is not assumed to have any knowledge of Jordan theory; the text can serve as a self-contained introduction to (real finite-dimensional) Jordan theory.
Publisher: Springer
ISBN: 3540444580
Category : Mathematics
Languages : en
Pages : 285
Book Description
The geometry of Jordan and Lie structures tries to answer the following question: what is the integrated, or geometric, version of real Jordan algebras, - triple systems and - pairs? Lie theory shows the way one has to go: Lie groups and symmetric spaces are the geometric version of Lie algebras and Lie triple systems. It turns out that both geometries are closely related via a functor between them, called the Jordan-Lie functor, which is constructed in this book. The reader is not assumed to have any knowledge of Jordan theory; the text can serve as a self-contained introduction to (real finite-dimensional) Jordan theory.
Lectures on Gaussian Integral Operators and Classical Groups
Author: Yu. A. Neretin
Publisher: European Mathematical Society
ISBN: 9783037190807
Category : Mathematics
Languages : en
Pages : 576
Book Description
This book is an elementary self-contained introduction to some constructions of representation theory and related topics of differential geometry and analysis. Topics covered include the theory of various Fourier-like integral operators such as Segal-Bargmann transforms, Gaussian integral operators in $L^2$ and in the Fock space, integral operators with theta-kernels, the geometry of real and $p$-adic classical groups and symmetric spaces. The heart of the book is the Weil representation of the symplectic group (real and complex realizations, relations with theta-functions and modular forms, $p$-adic and adelic constructions) and representations in Hilbert spaces of holomorphic functions of several complex variables. This book is addressed to graduate students and researchers in representation theory, differential geometry, and operator theory. Prerequisites are standard university courses in linear algebra, functional analysis, and complex analysis.
Publisher: European Mathematical Society
ISBN: 9783037190807
Category : Mathematics
Languages : en
Pages : 576
Book Description
This book is an elementary self-contained introduction to some constructions of representation theory and related topics of differential geometry and analysis. Topics covered include the theory of various Fourier-like integral operators such as Segal-Bargmann transforms, Gaussian integral operators in $L^2$ and in the Fock space, integral operators with theta-kernels, the geometry of real and $p$-adic classical groups and symmetric spaces. The heart of the book is the Weil representation of the symplectic group (real and complex realizations, relations with theta-functions and modular forms, $p$-adic and adelic constructions) and representations in Hilbert spaces of holomorphic functions of several complex variables. This book is addressed to graduate students and researchers in representation theory, differential geometry, and operator theory. Prerequisites are standard university courses in linear algebra, functional analysis, and complex analysis.
Jordan Algebras, Geometry of Hermitian Symmetric Spaces and Non-commutative Hardy Spaces
Author: Khalid Koufany
Publisher:
ISBN:
Category : Hardy spaces
Languages : en
Pages : 84
Book Description
Publisher:
ISBN:
Category : Hardy spaces
Languages : en
Pages : 84
Book Description