Category Theory in Physics, Mathematics, and Philosophy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Category Theory in Physics, Mathematics, and Philosophy PDF full book. Access full book title Category Theory in Physics, Mathematics, and Philosophy by Marek Kuś. Download full books in PDF and EPUB format.

Category Theory in Physics, Mathematics, and Philosophy

Category Theory in Physics, Mathematics, and Philosophy PDF Author: Marek Kuś
Publisher: Springer Nature
ISBN: 3030308960
Category : Science
Languages : en
Pages : 139

Book Description
The contributions gathered here demonstrate how categorical ontology can provide a basis for linking three important basic sciences: mathematics, physics, and philosophy. Category theory is a new formal ontology that shifts the main focus from objects to processes. The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations. Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.

Category Theory in Physics, Mathematics, and Philosophy

Category Theory in Physics, Mathematics, and Philosophy PDF Author: Marek Kuś
Publisher: Springer Nature
ISBN: 3030308960
Category : Science
Languages : en
Pages : 139

Book Description
The contributions gathered here demonstrate how categorical ontology can provide a basis for linking three important basic sciences: mathematics, physics, and philosophy. Category theory is a new formal ontology that shifts the main focus from objects to processes. The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations. Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.

Categories for the Working Philosopher

Categories for the Working Philosopher PDF Author: Elaine M. Landry
Publisher: Oxford University Press
ISBN: 019874899X
Category : Mathematics
Languages : en
Pages : 486

Book Description
This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.

Basic Category Theory

Basic Category Theory PDF Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193

Book Description
A short introduction ideal for students learning category theory for the first time.

Category Theory for Programmers (New Edition, Hardcover)

Category Theory for Programmers (New Edition, Hardcover) PDF Author: Bartosz Milewski
Publisher:
ISBN: 9780464243878
Category :
Languages : en
Pages :

Book Description
Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.

Category Theory in Context

Category Theory in Context PDF Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273

Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

What is Category Theory?

What is Category Theory? PDF Author: Giandomenico Sica
Publisher: Polimetrica s.a.s.
ISBN: 8876990313
Category : Mathematics
Languages : en
Pages : 292

Book Description


Mathematical Structuralism

Mathematical Structuralism PDF Author: Geoffrey Hellman
Publisher: Cambridge University Press
ISBN: 110863074X
Category : Science
Languages : en
Pages : 167

Book Description
The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.

Towards a Philosophy of Real Mathematics

Towards a Philosophy of Real Mathematics PDF Author: David Corfield
Publisher: Cambridge University Press
ISBN: 1139436392
Category : Philosophy
Languages : en
Pages : 300

Book Description
In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, to the use of analogy, the prospects for a Bayesian confirmation theory, the notion of a mathematical research programme and the ways in which new concepts are justified. His inspiring book challenges both philosophers and mathematicians to develop the broadest and richest philosophical resources for work in their disciplines and points clearly to the ways in which this can be done.

Axiomatic Method and Category Theory

Axiomatic Method and Category Theory PDF Author: Andrei Rodin
Publisher: Springer Science & Business Media
ISBN: 3319004042
Category : Philosophy
Languages : en
Pages : 285

Book Description
This volume explores the many different meanings of the notion of the axiomatic method, offering an insightful historical and philosophical discussion about how these notions changed over the millennia. The author, a well-known philosopher and historian of mathematics, first examines Euclid, who is considered the father of the axiomatic method, before moving onto Hilbert and Lawvere. He then presents a deep textual analysis of each writer and describes how their ideas are different and even how their ideas progressed over time. Next, the book explores category theory and details how it has revolutionized the notion of the axiomatic method. It considers the question of identity/equality in mathematics as well as examines the received theories of mathematical structuralism. In the end, Rodin presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics. Lawvere's axiomatization of topos theory and Voevodsky's axiomatization of higher homotopy theory exemplify a new way of axiomatic theory building, which goes beyond the classical Hilbert-style Axiomatic Method. The new notion of Axiomatic Method that emerges in categorical logic opens new possibilities for using this method in physics and other natural sciences. This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method.

An Invitation to Applied Category Theory

An Invitation to Applied Category Theory PDF Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351

Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.