Category Theory in Context PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Category Theory in Context PDF full book. Access full book title Category Theory in Context by Emily Riehl. Download full books in PDF and EPUB format.

Category Theory in Context

Category Theory in Context PDF Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273

Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Category Theory in Context

Category Theory in Context PDF Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273

Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Category Theory in Context

Category Theory in Context PDF Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 048680903X
Category : Mathematics
Languages : en
Pages : 273

Book Description
Category theory has provided the foundations for many of the twentieth century's greatest advances in pure mathematics. This concise, original text for a one-semester course on the subject is derived from courses that author Emily Riehl taught at Harvard and Johns Hopkins Universities. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads, and other topics. Suitable for advanced undergraduates and graduate students in mathematics, the text provides tools for understanding and attacking difficult problems in algebra, number theory, algebraic geometry, and algebraic topology. Drawing upon a broad range of mathematical examples from the categorical perspective, the author illustrates how the concepts and constructions of category theory arise from and illuminate more basic mathematical ideas. Prerequisites are limited to familiarity with some basic set theory and logic.

Categories for the Working Mathematician

Categories for the Working Mathematician PDF Author: Saunders Mac Lane
Publisher: Springer Science & Business Media
ISBN: 1475747217
Category : Mathematics
Languages : en
Pages : 320

Book Description
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.

Basic Category Theory

Basic Category Theory PDF Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193

Book Description
A short introduction ideal for students learning category theory for the first time.

Categorical Homotopy Theory

Categorical Homotopy Theory PDF Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371

Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

Basic Concepts of Enriched Category Theory

Basic Concepts of Enriched Category Theory PDF Author: Gregory Maxwell Kelly
Publisher: CUP Archive
ISBN: 9780521287029
Category : Mathematics
Languages : en
Pages : 260

Book Description


Conceptual Mathematics

Conceptual Mathematics PDF Author: F. William Lawvere
Publisher: Cambridge University Press
ISBN: 0521894859
Category : Mathematics
Languages : en
Pages : 409

Book Description
This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.

Re-Assessing Modalising Expressions

Re-Assessing Modalising Expressions PDF Author: Pascal Hohaus
Publisher: John Benjamins Publishing Company
ISBN: 9027260524
Category : Language Arts & Disciplines
Languages : en
Pages : 352

Book Description
Mood, modality and evidentiality are popular and dynamic areas in linguistics. Re-Assessing Modalising Expressions – Categories, co-text, and context focuses on the specific issue of the ways language users express permission, obligation, volition (intention), possibility and ability, necessity and prediction linguistically. Using a range of evidence and corpus data collected from different sources, the authors of this volume examine the distribution and functions of a range of patterns involving modalising expressions as predominantly found in standard American English, British English or Hong Kong English, but also in Japanese. The authors are particularly interested in addressing (co-)textual manifestations of modalising expressions as well as their distribution across different text-types and thus filling a gap research was unable to plug in the past. Thoughts on categorising or re-categorising modalising expressions initiate and complement a multi-perspectival enterprise that is intended to bring research in this area a step forward.

Categories, Types, and Structures

Categories, Types, and Structures PDF Author: Andrea Asperti
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 330

Book Description
Category theory is a mathematical subject whose importance in several areas of computer science, most notably the semantics of programming languages and the design of programmes using abstract data types, is widely acknowledged. This book introduces category theory at a level appropriate for computer scientists and provides practical examples in the context of programming language design.

An Invitation to Applied Category Theory

An Invitation to Applied Category Theory PDF Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351

Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.