Categorical Quantum Models and Logics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Categorical Quantum Models and Logics PDF full book. Access full book title Categorical Quantum Models and Logics by Chris Heunen. Download full books in PDF and EPUB format.

Categorical Quantum Models and Logics

Categorical Quantum Models and Logics PDF Author: Chris Heunen
Publisher: Amsterdam University Press
ISBN: 9085550246
Category : Mathematics
Languages : en
Pages : 214

Book Description
This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-

Categorical Quantum Models and Logics

Categorical Quantum Models and Logics PDF Author: Chris Heunen
Publisher: Amsterdam University Press
ISBN: 9085550246
Category : Mathematics
Languages : en
Pages : 214

Book Description
This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-

Categories for Quantum Theory

Categories for Quantum Theory PDF Author: Chris Heunen
Publisher: Oxford University Press
ISBN: 0191060062
Category : Mathematics
Languages : en
Pages : 320

Book Description
Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition, and a conceptual way to understand many high-level quantum phenomena. This text lays the foundation for this categorical quantum mechanics, with an emphasis on the graphical calculus which makes computation intuitive. Biproducts and dual objects are introduced and used to model superposition and entanglement, with quantum teleportation studied abstractly using these structures. Monoids, Frobenius structures and Hopf algebras are described, and it is shown how they can be used to model classical information and complementary observables. The CP construction, a categorical tool to describe probabilistic quantum systems, is also investigated. The last chapter introduces higher categories, surface diagrams and 2-Hilbert spaces, and shows how the language of duality in monoidal 2-categories can be used to reason about quantum protocols, including quantum teleportation and dense coding. Prior knowledge of linear algebra, quantum information or category theory would give an ideal background for studying this text, but it is not assumed, with essential background material given in a self-contained introductory chapter. Throughout the text links with many other areas are highlighted, such as representation theory, topology, quantum algebra, knot theory, and probability theory, and nonstandard models are presented, such as sets and relations. All results are stated rigorously, and full proofs are given as far as possible, making this book an invaluable reference for modern techniques in quantum logic, with much of the material not available in any other textbook.

Logic and Algebraic Structures in Quantum Computing

Logic and Algebraic Structures in Quantum Computing PDF Author: Jennifer Chubb
Publisher: Cambridge University Press
ISBN: 110703339X
Category : Computers
Languages : en
Pages : 355

Book Description
Experts in the field explore the connections across physics, quantum logic, and quantum computing.

Handbook of Quantum Logic and Quantum Structures

Handbook of Quantum Logic and Quantum Structures PDF Author: Kurt Engesser
Publisher: Elsevier
ISBN: 0080931669
Category : Mathematics
Languages : en
Pages : 727

Book Description
Quantum mechanics is said to be the most successful physical theory ever. It is, in fact, unique in its success when applied to concrete physical problems. On the other hand, however, it raises profound conceptual problems that are equally unprecedented. Quantum logic, the topic of this volume, can be described as an attempt to cast light on the puzzle of quantum mechanics from the point of view of logic. Since its inception in the famous 1936 paper by Birkhoff and von Neumann entitled, “The logic of quantum mechanics, quantum logic has undergone an enormous development. Various schools of thought and approaches have emerged, and there are a variety of technical results. The chapters of this volume constitute a comprehensive presentation of the main schools, approaches and results in the field of quantum logic. Authored by eminent scholars in the field Material presented is of recent origin representing the frontier of the subject Provides the most comprehensive and varied discussion of Quantum Mechanics available

Categories and Types in Logic, Language, and Physics

Categories and Types in Logic, Language, and Physics PDF Author: Claudia Casadio
Publisher: Springer
ISBN: 3642547893
Category : Mathematics
Languages : en
Pages : 432

Book Description
For more than 60 years, Jim Lambek has been a profoundly inspirational mathematician, with groundbreaking contributions to algebra, category theory, linguistics, theoretical physics, logic and proof theory. This Festschrift was put together on the occasion of his 90th birthday. The papers in it give a good picture of the multiple research areas where the impact of Jim Lambek's work can be felt. The volume includes contributions by prominent researchers and by their students, showing how Jim Lambek's ideas keep inspiring upcoming generations of scholars.

Quantum Physics and Linguistics

Quantum Physics and Linguistics PDF Author: Chris Heunen
Publisher: OUP Oxford
ISBN: 0191650315
Category : Science
Languages : en
Pages : 430

Book Description
New scientific paradigms typically consist of an expansion of the conceptual language with which we describe the world. Over the past decade, theoretical physics and quantum information theory have turned to category theory to model and reason about quantum protocols. This new use of categorical and algebraic tools allows a more conceptual and insightful expression of elementary events such as measurements, teleportation and entanglement operations, that were obscured in previous formalisms. Recent work in natural language semantics has begun to use these categorical methods to relate grammatical analysis and semantic representations in a unified framework for analysing language meaning, and learning meaning from a corpus. A growing body of literature on the use of categorical methods in quantum information theory and computational linguistics shows both the need and opportunity for new research on the relation between these categorical methods and the abstract notion of information flow. This book supplies an overview of how categorical methods are used to model information flow in both physics and linguistics. It serves as an introduction to this interdisciplinary research, and provides a basis for future research and collaboration between the different communities interested in applying category theoretic methods to their domain's open problems.

Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics

Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics PDF Author: Claudia Casadio
Publisher: Springer Nature
ISBN: 3030665453
Category : Philosophy
Languages : en
Pages : 432

Book Description
This book is dedicated to the life and work of the mathematician Joachim Lambek (1922–2014). The editors gather together noted experts to discuss the state of the art of various of Lambek’s works in logic, category theory, and linguistics and to celebrate his contributions to those areas over the course of his multifaceted career. After early work in combinatorics and elementary number theory, Lambek became a distinguished algebraist (notably in ring theory). In the 1960s, he began to work in category theory, categorical algebra, logic, proof theory, and foundations of computability. In a parallel development, beginning in the late 1950s and for the rest of his career, Lambek also worked extensively in mathematical linguistics and computational approaches to natural languages. He and his collaborators perfected production and type grammars for numerous natural languages. Lambek grammars form an early noncommutative precursor to Girard’s linear logic. In a surprising development (2000), he introduced a novel and deeper algebraic framework (which he called pregroup grammars) for analyzing natural language, along with algebraic, higher category, and proof-theoretic semantics. This book is of interest to mathematicians, logicians, linguists, and computer scientists.

Foundations of Quantum Programming

Foundations of Quantum Programming PDF Author: Mingsheng Ying
Publisher: Elsevier
ISBN: 0443159432
Category : Computers
Languages : en
Pages : 474

Book Description
Quantum computers promise dramatic advantages in processing speed over currently available computer systems. Quantum computing offers great promise in a wide variety of computing and scientific research, including Quantum cryptography, machine learning, computational biology, renewable energy, computer-aided drug design, generative chemistry, and any scientific or enterprise application that requires computation speed or reach beyond the limits of current conventional computer systems. Foundations of Quantum Programming, Second Edition discusses how programming methodologies and technologies developed for current computers can be extended for quantum computers, along with new programming methodologies and technologies that can effectively exploit the unique power of quantum computing. The Second Edition includes two new chapters describing programming models and methodologies for parallel and distributed quantum computers. The author has also included two new chapters to introduce Quantum Machine Learning and its programming models – parameterized and differential quantum programming. In addition, the First Edition's preliminaries chapter has been split into three chapters, with two sections for quantum Turing machines and random access stored program machines added to give the reader a more complete picture of quantum computational models. Finally, several other new techniques are introduced in the Second Edition, including invariants of quantum programs and their generation algorithms, and abstract interpretation of quantum programs. Demystifies the theory of quantum programming using a step-by-step approach Includes methodologies, techniques, and tools for the development, analysis, and verification of quantum programs and quantum cryptographic protocols Covers the interdisciplinary nature of quantum programming by providing preliminaries from quantum mechanics, mathematics, and computer science, and pointing out its potential applications to quantum engineering and physics Presents a coherent and self-contained treatment that will be valuable for academic and industrial researchers and developers Adds new developments such as parallel and distributed quantum programming; and introduces several new program analysis techniques such as invariants generation and abstract interpretation

Quantum Software Engineering

Quantum Software Engineering PDF Author: Manuel A. Serrano
Publisher: Springer Nature
ISBN: 3031053249
Category : Computers
Languages : en
Pages : 321

Book Description
This book presents a set of software engineering techniques and tools to improve the productivity and assure the quality in quantum software development. Through the collaboration of the software engineering community with the quantum computing community new architectural paradigms for quantum-enabled computing systems will be anticipated and developed. The book starts with a chapter that introduces the main concepts and general foundations related to quantum computing. This is followed by a number of chapters dealing with the quantum software engineering methods and techniques. Topics like the Talavera Manifesto for quantum software engineering, frameworks for hybrid systems, formal methods for quantum software engineering, quantum software modelling languages, and reengineering for quantum software are covered in this part. A second set of chapters then deals with quantum software environments and tools, detailing platforms like QuantumPath®, Classiq as well as quantum software frameworks for deep learning. Overall, the book aims at academic researchers and practitioners involved in the creation of quantum information systems and software platforms. It is assumed that readers have a background in traditional software engineering and information systems.

Picturing Quantum Processes

Picturing Quantum Processes PDF Author: Bob Coecke
Publisher: Cambridge University Press
ISBN: 1108107710
Category : Science
Languages : en
Pages : 847

Book Description
The unique features of the quantum world are explained in this book through the language of diagrams, setting out an innovative visual method for presenting complex theories. Requiring only basic mathematical literacy, this book employs a unique formalism that builds an intuitive understanding of quantum features while eliminating the need for complex calculations. This entirely diagrammatic presentation of quantum theory represents the culmination of ten years of research, uniting classical techniques in linear algebra and Hilbert spaces with cutting-edge developments in quantum computation and foundations. Written in an entertaining and user-friendly style and including more than one hundred exercises, this book is an ideal first course in quantum theory, foundations, and computation for students from undergraduate to PhD level, as well as an opportunity for researchers from a broad range of fields, from physics to biology, linguistics, and cognitive science, to discover a new set of tools for studying processes and interaction.