CAS, CERN Accelerator School Superconductivity in Particle Accelerators

CAS, CERN Accelerator School Superconductivity in Particle Accelerators PDF Author: Stuart Turner
Publisher:
ISBN:
Category : Particle accelerators
Languages : en
Pages : 380

Book Description


CAS CERN Accelerator School Superconductivity in Particle Accelerators

CAS CERN Accelerator School Superconductivity in Particle Accelerators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


CAS CERN Accelerator School, Vacuum in Accelerators

CAS CERN Accelerator School, Vacuum in Accelerators PDF Author:
Publisher:
ISBN:
Category : Particle accelerators
Languages : en
Pages : 420

Book Description


CAS, CERN Accelerator School

CAS, CERN Accelerator School PDF Author: Stuart Turner
Publisher: Cern European Organization for Nuclear Research
ISBN:
Category : Science
Languages : en
Pages : 404

Book Description


CAS, CERN Accelerator School

CAS, CERN Accelerator School PDF Author:
Publisher:
ISBN:
Category : Particle accelerators
Languages : en
Pages : 344

Book Description


CAS, CERN Accelerator School, Fifth General Accelerator Physics Course

CAS, CERN Accelerator School, Fifth General Accelerator Physics Course PDF Author:
Publisher:
ISBN:
Category : Particle accelerators
Languages : en
Pages : 548

Book Description


Superconducting Accelerator Magnets

Superconducting Accelerator Magnets PDF Author: K.-H. Mess
Publisher: World Scientific
ISBN: 9789810227906
Category : Science
Languages : en
Pages : 236

Book Description
The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.

Handbook of Superconductivity

Handbook of Superconductivity PDF Author: David A. Cardwell
Publisher: CRC Press
ISBN: 1000342301
Category : Science
Languages : en
Pages : 881

Book Description
This is the last of three volumes of the extensively revised and updated second edition of the Handbook of Superconductivity. The past twenty years have seen rapid progress in superconducting materials, which exhibit one of the most remarkable physical states of matter ever to be discovered. Superconductivity brings quantum mechanics to the scale of the everyday world. Viable applications of superconductors rely fundamentally on an understanding of these intriguing phenomena and the availability of a range of materials with bespoke properties to meet practical needs. While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into various shapes and configurations needed for applications, and ends with chapters on refrigeration methods necessary to attain the superconducting state and the desired performance. This third volume starts with a wide range of methods permitting one to characterize both the materials and various end products of processing. Subsequently, diverse classes of both large scale and electronic applications are described. Volume 3 ends with a glossary relevant to all three volumes. Key Features: Covers the depth and breadth of the field Includes contributions from leading academics and industry professionals across the world Provides hands-on familiarity with the characterization methods and offers descriptions of representative examples of practical applications A comprehensive reference, the handbook is suitable for both graduate students and practitioners in experimental physics, materials science, and multiple engineering disciplines, including electronic and electrical, chemical, mechanical, metallurgy and others.

Field Computation for Accelerator Magnets

Field Computation for Accelerator Magnets PDF Author: Stephan Russenschuck
Publisher: John Wiley & Sons
ISBN: 3527635475
Category : Science
Languages : en
Pages : 778

Book Description
Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.

Cryogenic Heat Management

Cryogenic Heat Management PDF Author: Jonathan Demko
Publisher: CRC Press
ISBN: 1000579689
Category : Science
Languages : en
Pages : 459

Book Description
Cryogenic engineering (cryogenics) is the production, preservation, and use or application of cold. This book presents a comprehensive introduction to designing systems to deal with heat – effective management of cold, exploring the directing (or redirecting), promoting, or inhibiting this flow of heat in a practical way. It provides a description of the necessary theory, design methodology, and advanced demonstrations (thermodynamics, heat transfer, thermal insulation, fluid mechanics) for many frequently occurring situations in low-temperature apparatus. This includes systems that are widely used such as superconducting magnets for magnetic resonance imaging (MRI), high-energy physics, fusion, tokamak and free electron laser systems, space launch and exploration, and energy and transportation use of liquid hydrogen, as well as potential future applications of cryo-life sciences and chemical industries. The book is written with the assumption that the reader has an undergraduate understanding of thermodynamics, heat transfer, and fluid mechanics, in addition to the mechanics of materials, material science, and physical chemistry. Cryogenic Heat Management: Technology and Applications for Science and Industry will be a valuable guide for those researching, teaching, or working with low-temperature or cryogenic systems, in addition to postgraduates studying the topic. Key features: Presents simplified but useful and practical equations that can be applied in estimating performance and design of energy-efficient systems in low-temperature systems or cryogenics Contains practical approaches and advanced design materials for insulation, shields/anchors, cryogen vessels/pipes, calorimeters, cryogenic heat switches, cryostats, current leads, and RF couplers Provides a comprehensive introduction to the necessary theory and models needed for solutions to common difficulties and illustrates the engineering examples with more than 300 figures