Author: Mourad Bellassoued
Publisher: Springer
ISBN: 4431566007
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems
Author: Mourad Bellassoued
Publisher: Springer
ISBN: 4431566007
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
Publisher: Springer
ISBN: 4431566007
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
Carleman Estimates for Second Order Partial Differential Operators and Applications
Author: Xiaoyu Fu
Publisher: Springer Nature
ISBN: 3030295303
Category : Mathematics
Languages : en
Pages : 136
Book Description
This book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field.
Publisher: Springer Nature
ISBN: 3030295303
Category : Mathematics
Languages : en
Pages : 136
Book Description
This book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field.
Inverse Problems and Carleman Estimates
Author: Michael V. Klibanov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110745488
Category : Mathematics
Languages : en
Pages : 344
Book Description
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110745488
Category : Mathematics
Languages : en
Pages : 344
Book Description
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.
Inverse Problems and Related Topics
Author: Jin Cheng
Publisher: Springer Nature
ISBN: 9811515921
Category : Mathematics
Languages : en
Pages : 310
Book Description
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.
Publisher: Springer Nature
ISBN: 9811515921
Category : Mathematics
Languages : en
Pages : 310
Book Description
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.
Control and Inverse Problems
Author: Kaïs Ammari
Publisher: Springer Nature
ISBN: 3031356756
Category : Mathematics
Languages : en
Pages : 276
Book Description
This volume presents a timely overview of control theory and inverse problems, and highlights recent advances in these active research areas. The chapters are based on talks given at the spring school "Control & Inverse Problems” held in Monastir, Tunisia in May 2022. In addition to providing a snapshot of these two areas, chapters also highlight breakthroughs on more specific topics, such as: Controllability of dynamical systems Information transfer in multiplier equations Nonparametric instrumental regression Control of chained systems The damped wave equation Control and Inverse Problems will be a valuable resource for both established researchers as well as more junior members of the community.
Publisher: Springer Nature
ISBN: 3031356756
Category : Mathematics
Languages : en
Pages : 276
Book Description
This volume presents a timely overview of control theory and inverse problems, and highlights recent advances in these active research areas. The chapters are based on talks given at the spring school "Control & Inverse Problems” held in Monastir, Tunisia in May 2022. In addition to providing a snapshot of these two areas, chapters also highlight breakthroughs on more specific topics, such as: Controllability of dynamical systems Information transfer in multiplier equations Nonparametric instrumental regression Control of chained systems The damped wave equation Control and Inverse Problems will be a valuable resource for both established researchers as well as more junior members of the community.
Kernel Determination Problems in Hyperbolic Integro-Differential Equations
Author: Durdimurod K. Durdiev
Publisher: Springer Nature
ISBN: 9819922607
Category : Mathematics
Languages : en
Pages : 390
Book Description
This book studies the construction methods for solving one-dimensional and multidimensional inverse dynamical problems for hyperbolic equations with memory. The theorems of uniqueness, stability and existence of solutions of these inverse problems are obtained. This book discusses the processes, by using generalized solutions, the spread of elastic or electromagnetic waves arising from sources of the type of pulsed directional “impacts” or “explosions”. This book presents new results in the study of local and global solvability of kernel determination problems for a half-space. It describes the problems of reconstructing the coefficients of differential equations and the convolution kernel of hyperbolic integro-differential equations by the method of Dirichlet-to-Neumann. The book will be useful for researchers and students specializing in the field of inverse problems of mathematical physics.
Publisher: Springer Nature
ISBN: 9819922607
Category : Mathematics
Languages : en
Pages : 390
Book Description
This book studies the construction methods for solving one-dimensional and multidimensional inverse dynamical problems for hyperbolic equations with memory. The theorems of uniqueness, stability and existence of solutions of these inverse problems are obtained. This book discusses the processes, by using generalized solutions, the spread of elastic or electromagnetic waves arising from sources of the type of pulsed directional “impacts” or “explosions”. This book presents new results in the study of local and global solvability of kernel determination problems for a half-space. It describes the problems of reconstructing the coefficients of differential equations and the convolution kernel of hyperbolic integro-differential equations by the method of Dirichlet-to-Neumann. The book will be useful for researchers and students specializing in the field of inverse problems of mathematical physics.
Nonlinear and Inverse Problems in Electromagnetics
Author: L. Beilina
Publisher: Springer
ISBN: 3319940600
Category : Mathematics
Languages : en
Pages : 151
Book Description
This volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.
Publisher: Springer
ISBN: 3319940600
Category : Mathematics
Languages : en
Pages : 151
Book Description
This volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.
Gas Dynamics with Applications in Industry and Life Sciences
Author: Mohammad Asadzadeh
Publisher: Springer Nature
ISBN: 3031358716
Category : Mathematics
Languages : en
Pages : 288
Book Description
This proceedings volume gathers selected contributions presented at two instances of the "JSPS/SAC Seminar: On Gas Kinetic/Dynamics and Life Science", held by the Chalmers University of Technology and University of Gothenburg, Sweden, on March 25-26, 2021 (virtual) and March 17-18, 2022 (virtual). Works in this book provide a concise approach to the theoretical and numerical analysis of kinetic type equations that arise, for example, in modeling industrial, medical, and environmental problems. Readers will find some of the most recent theoretical results, newly developed numerical methods in the field, and some open problems. Possible application areas encompass fission/fusion energy, electromagnetics, nuclear science and engineering, medical service, radiation oncology, and plants growth conditions, to name a few. The JSPS/SAC seminars are jointly organized by JSPS (Japan Society for the Promotion of Science)—Stockholm Office and the Department of Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden. These seminars foster discussions on the mathematical theory, industrial and life science applications, and numerical analysis of non-linear hyperbolic partial differential equations modeling collision-less plasma and charged particles. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. Chapter 11 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3031358716
Category : Mathematics
Languages : en
Pages : 288
Book Description
This proceedings volume gathers selected contributions presented at two instances of the "JSPS/SAC Seminar: On Gas Kinetic/Dynamics and Life Science", held by the Chalmers University of Technology and University of Gothenburg, Sweden, on March 25-26, 2021 (virtual) and March 17-18, 2022 (virtual). Works in this book provide a concise approach to the theoretical and numerical analysis of kinetic type equations that arise, for example, in modeling industrial, medical, and environmental problems. Readers will find some of the most recent theoretical results, newly developed numerical methods in the field, and some open problems. Possible application areas encompass fission/fusion energy, electromagnetics, nuclear science and engineering, medical service, radiation oncology, and plants growth conditions, to name a few. The JSPS/SAC seminars are jointly organized by JSPS (Japan Society for the Promotion of Science)—Stockholm Office and the Department of Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden. These seminars foster discussions on the mathematical theory, industrial and life science applications, and numerical analysis of non-linear hyperbolic partial differential equations modeling collision-less plasma and charged particles. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. Chapter 11 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Trends in Control Theory and Partial Differential Equations
Author: Fatiha Alabau-Boussouira
Publisher: Springer
ISBN: 3030179494
Category : Mathematics
Languages : en
Pages : 285
Book Description
This book presents cutting-edge contributions in the areas of control theory and partial differential equations. Over the decades, control theory has had deep and fruitful interactions with the theory of partial differential equations (PDEs). Well-known examples are the study of the generalized solutions of Hamilton-Jacobi-Bellman equations arising in deterministic and stochastic optimal control and the development of modern analytical tools to study the controllability of infinite dimensional systems governed by PDEs. In the present volume, leading experts provide an up-to-date overview of the connections between these two vast fields of mathematics. Topics addressed include regularity of the value function associated to finite dimensional control systems, controllability and observability for PDEs, and asymptotic analysis of multiagent systems. The book will be of interest for both researchers and graduate students working in these areas.
Publisher: Springer
ISBN: 3030179494
Category : Mathematics
Languages : en
Pages : 285
Book Description
This book presents cutting-edge contributions in the areas of control theory and partial differential equations. Over the decades, control theory has had deep and fruitful interactions with the theory of partial differential equations (PDEs). Well-known examples are the study of the generalized solutions of Hamilton-Jacobi-Bellman equations arising in deterministic and stochastic optimal control and the development of modern analytical tools to study the controllability of infinite dimensional systems governed by PDEs. In the present volume, leading experts provide an up-to-date overview of the connections between these two vast fields of mathematics. Topics addressed include regularity of the value function associated to finite dimensional control systems, controllability and observability for PDEs, and asymptotic analysis of multiagent systems. The book will be of interest for both researchers and graduate students working in these areas.
Systems with Persistent Memory
Author: Luciano Pandolfi
Publisher: Springer Nature
ISBN: 3030802817
Category : Science
Languages : en
Pages : 365
Book Description
This text addresses systems with persistent memory that are common mathematical models used in the study of viscoelasticity and thermodynamics with memory. In particular, this class of systems is used to model non-Fickian diffusion in the presence of complex molecular structures. Hence, it has wide applications in biology. The book focuses on the properties and controllability of the archetypal heat and wave equations with memory and introduces the dynamic approach to identification problems and the basic techniques used in the study of stability. The book presents several approaches currently used to study systems with persistent memory: Volterra equation in Hilbert spaces, Laplace transform techniques and semigroup methods. The text is intended for a diverse audience in applied mathematics and engineering and it can be used in PhD courses. Readers are recommended to have a background in the elements of functional analysis. Topics of functional analysis which younger readers may need to familiarize with are presented in the book.
Publisher: Springer Nature
ISBN: 3030802817
Category : Science
Languages : en
Pages : 365
Book Description
This text addresses systems with persistent memory that are common mathematical models used in the study of viscoelasticity and thermodynamics with memory. In particular, this class of systems is used to model non-Fickian diffusion in the presence of complex molecular structures. Hence, it has wide applications in biology. The book focuses on the properties and controllability of the archetypal heat and wave equations with memory and introduces the dynamic approach to identification problems and the basic techniques used in the study of stability. The book presents several approaches currently used to study systems with persistent memory: Volterra equation in Hilbert spaces, Laplace transform techniques and semigroup methods. The text is intended for a diverse audience in applied mathematics and engineering and it can be used in PhD courses. Readers are recommended to have a background in the elements of functional analysis. Topics of functional analysis which younger readers may need to familiarize with are presented in the book.