Author: Meenu Gupta
Publisher: CRC Press
ISBN: 1000508587
Category : Health & Fitness
Languages : en
Pages : 219
Book Description
Cancer Prediction for Industrial IoT 4.0: A Machine Learning Perspective explores various cancers using Artificial Intelligence techniques. It presents the rapid advancement in the existing prediction models by applying Machine Learning techniques. Several applications of Machine Learning in different cancer prediction and treatment options are discussed, including specific ideas, tools and practices most applicable to product/service development and innovation opportunities. The wide variety of topics covered offers readers multiple perspectives on various disciplines. Features • Covers the fundamentals, history, reality and challenges of cancer • Presents concepts and analysis of different cancers in humans • Discusses Machine Learning-based deep learning and data mining concepts in the prediction of cancer • Offers real-world examples of cancer prediction • Reviews strategies and tools used in cancer prediction • Explores the future prospects in cancer prediction and treatment Readers will learn the fundamental concepts and analysis of cancer prediction and treatment, including how to apply emerging technologies such as Machine Learning into practice to tackle challenges in domains/fields of cancer with real-world scenarios. Hands-on chapters contributed by academicians and other professionals from reputed organizations provide and describe frameworks, applications, best practices and case studies on emerging cancer treatment and predictions. This book will be a vital resource to graduate students, data scientists, Machine Learning researchers, medical professionals and analytics managers.
Cancer Prediction for Industrial IoT 4.0
Author: Meenu Gupta
Publisher: CRC Press
ISBN: 1000508587
Category : Health & Fitness
Languages : en
Pages : 219
Book Description
Cancer Prediction for Industrial IoT 4.0: A Machine Learning Perspective explores various cancers using Artificial Intelligence techniques. It presents the rapid advancement in the existing prediction models by applying Machine Learning techniques. Several applications of Machine Learning in different cancer prediction and treatment options are discussed, including specific ideas, tools and practices most applicable to product/service development and innovation opportunities. The wide variety of topics covered offers readers multiple perspectives on various disciplines. Features • Covers the fundamentals, history, reality and challenges of cancer • Presents concepts and analysis of different cancers in humans • Discusses Machine Learning-based deep learning and data mining concepts in the prediction of cancer • Offers real-world examples of cancer prediction • Reviews strategies and tools used in cancer prediction • Explores the future prospects in cancer prediction and treatment Readers will learn the fundamental concepts and analysis of cancer prediction and treatment, including how to apply emerging technologies such as Machine Learning into practice to tackle challenges in domains/fields of cancer with real-world scenarios. Hands-on chapters contributed by academicians and other professionals from reputed organizations provide and describe frameworks, applications, best practices and case studies on emerging cancer treatment and predictions. This book will be a vital resource to graduate students, data scientists, Machine Learning researchers, medical professionals and analytics managers.
Publisher: CRC Press
ISBN: 1000508587
Category : Health & Fitness
Languages : en
Pages : 219
Book Description
Cancer Prediction for Industrial IoT 4.0: A Machine Learning Perspective explores various cancers using Artificial Intelligence techniques. It presents the rapid advancement in the existing prediction models by applying Machine Learning techniques. Several applications of Machine Learning in different cancer prediction and treatment options are discussed, including specific ideas, tools and practices most applicable to product/service development and innovation opportunities. The wide variety of topics covered offers readers multiple perspectives on various disciplines. Features • Covers the fundamentals, history, reality and challenges of cancer • Presents concepts and analysis of different cancers in humans • Discusses Machine Learning-based deep learning and data mining concepts in the prediction of cancer • Offers real-world examples of cancer prediction • Reviews strategies and tools used in cancer prediction • Explores the future prospects in cancer prediction and treatment Readers will learn the fundamental concepts and analysis of cancer prediction and treatment, including how to apply emerging technologies such as Machine Learning into practice to tackle challenges in domains/fields of cancer with real-world scenarios. Hands-on chapters contributed by academicians and other professionals from reputed organizations provide and describe frameworks, applications, best practices and case studies on emerging cancer treatment and predictions. This book will be a vital resource to graduate students, data scientists, Machine Learning researchers, medical professionals and analytics managers.
IoT-Based Data Analytics for the Healthcare Industry
Author: Sanjay Kumar Singh
Publisher: Academic Press
ISBN: 0128214767
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages
Publisher: Academic Press
ISBN: 0128214767
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages
Cancer Prediction for Industrial IoT 4.0
Author: Meenu Gupta
Publisher: CRC Press
ISBN: 1000508668
Category : Computers
Languages : en
Pages : 202
Book Description
Cancer Prediction for Industrial IoT 4.0: A Machine Learning Perspective explores various cancers using Artificial Intelligence techniques. It presents the rapid advancement in the existing prediction models by applying Machine Learning techniques. Several applications of Machine Learning in different cancer prediction and treatment options are discussed, including specific ideas, tools and practices most applicable to product/service development and innovation opportunities. The wide variety of topics covered offers readers multiple perspectives on various disciplines. Features • Covers the fundamentals, history, reality and challenges of cancer • Presents concepts and analysis of different cancers in humans • Discusses Machine Learning-based deep learning and data mining concepts in the prediction of cancer • Offers real-world examples of cancer prediction • Reviews strategies and tools used in cancer prediction • Explores the future prospects in cancer prediction and treatment Readers will learn the fundamental concepts and analysis of cancer prediction and treatment, including how to apply emerging technologies such as Machine Learning into practice to tackle challenges in domains/fields of cancer with real-world scenarios. Hands-on chapters contributed by academicians and other professionals from reputed organizations provide and describe frameworks, applications, best practices and case studies on emerging cancer treatment and predictions. This book will be a vital resource to graduate students, data scientists, Machine Learning researchers, medical professionals and analytics managers.
Publisher: CRC Press
ISBN: 1000508668
Category : Computers
Languages : en
Pages : 202
Book Description
Cancer Prediction for Industrial IoT 4.0: A Machine Learning Perspective explores various cancers using Artificial Intelligence techniques. It presents the rapid advancement in the existing prediction models by applying Machine Learning techniques. Several applications of Machine Learning in different cancer prediction and treatment options are discussed, including specific ideas, tools and practices most applicable to product/service development and innovation opportunities. The wide variety of topics covered offers readers multiple perspectives on various disciplines. Features • Covers the fundamentals, history, reality and challenges of cancer • Presents concepts and analysis of different cancers in humans • Discusses Machine Learning-based deep learning and data mining concepts in the prediction of cancer • Offers real-world examples of cancer prediction • Reviews strategies and tools used in cancer prediction • Explores the future prospects in cancer prediction and treatment Readers will learn the fundamental concepts and analysis of cancer prediction and treatment, including how to apply emerging technologies such as Machine Learning into practice to tackle challenges in domains/fields of cancer with real-world scenarios. Hands-on chapters contributed by academicians and other professionals from reputed organizations provide and describe frameworks, applications, best practices and case studies on emerging cancer treatment and predictions. This book will be a vital resource to graduate students, data scientists, Machine Learning researchers, medical professionals and analytics managers.
Proceedings of the 19th International Conference on Computing and Information Technology (IC2IT 2023)
Author: Phayung Meesad
Publisher: Springer Nature
ISBN: 3031304748
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
This book gathers the high-quality papers presented at the 19th International Conference on Computing and Information Technology (IC2IT2023), held on May 18–19, 2023, in Bangkok, Thailand. The book presents an original research work for both academic and industry domains, which is aiming to show valuable knowledge, skills and experiences in the field of computing and information technology. The topics covered in the book include natural language processing, image processing, intelligent systems and algorithms, as well as machine learning. These lead to the major research directions for innovating computational methods and applications of information technology.
Publisher: Springer Nature
ISBN: 3031304748
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
This book gathers the high-quality papers presented at the 19th International Conference on Computing and Information Technology (IC2IT2023), held on May 18–19, 2023, in Bangkok, Thailand. The book presents an original research work for both academic and industry domains, which is aiming to show valuable knowledge, skills and experiences in the field of computing and information technology. The topics covered in the book include natural language processing, image processing, intelligent systems and algorithms, as well as machine learning. These lead to the major research directions for innovating computational methods and applications of information technology.
Intelligent Healthcare
Author: Chinmay Chakraborty
Publisher: Springer Nature
ISBN: 9811681503
Category : Medical
Languages : en
Pages : 493
Book Description
The book Intelligent Healthcare: Infrastructure, Algorithms, and Management® cover a wide range of research topics on innovative intelligent healthcare solutions and advancements with the latest research developments. Data analytics are relevant for healthcare to meet many technical challenges and issues that need to be addressed to realize this potential. The advanced healthcare systems have to be upgraded with new capabilities such as data analytics, machine learning, intelligent decision making, and more professional services. The Internet of Things helps to design and develop intelligent healthcare solutions assisted by security, data analytics, and machine learning. This book will provide federated learning, Data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart healthcare. This book aims to attract works on multidisciplinary research spanning across computer science and engineering, environmental studies, services, urban planning and development, Healthcare, social sciences, and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative learning and computing solutions and big medical data-powered applications to cope with the real-world challenges for building smart healthcare sectors. Main Features: Ø Immersive technologies in healthcare Ø Internet of medical things Ø Federated learning algorithms Ø Explainable AI in Pervasive Healthcare Ø New management principles using biomedical data Ø Secured healthcare management systems This book aims to set up a better understanding of data scientists, researchers, and technologists under innovative digital health. The reader can find out existing research challenges, current market trends, and low-cost technologies to smoothly address the digital health issue.
Publisher: Springer Nature
ISBN: 9811681503
Category : Medical
Languages : en
Pages : 493
Book Description
The book Intelligent Healthcare: Infrastructure, Algorithms, and Management® cover a wide range of research topics on innovative intelligent healthcare solutions and advancements with the latest research developments. Data analytics are relevant for healthcare to meet many technical challenges and issues that need to be addressed to realize this potential. The advanced healthcare systems have to be upgraded with new capabilities such as data analytics, machine learning, intelligent decision making, and more professional services. The Internet of Things helps to design and develop intelligent healthcare solutions assisted by security, data analytics, and machine learning. This book will provide federated learning, Data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart healthcare. This book aims to attract works on multidisciplinary research spanning across computer science and engineering, environmental studies, services, urban planning and development, Healthcare, social sciences, and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative learning and computing solutions and big medical data-powered applications to cope with the real-world challenges for building smart healthcare sectors. Main Features: Ø Immersive technologies in healthcare Ø Internet of medical things Ø Federated learning algorithms Ø Explainable AI in Pervasive Healthcare Ø New management principles using biomedical data Ø Secured healthcare management systems This book aims to set up a better understanding of data scientists, researchers, and technologists under innovative digital health. The reader can find out existing research challenges, current market trends, and low-cost technologies to smoothly address the digital health issue.
Machine Learning for Critical Internet of Medical Things
Author: Fadi Al-Turjman
Publisher: Springer Nature
ISBN: 3030809285
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
This book discusses the applications, challenges, and future trends of machine learning in medical domain, including both basic and advanced topics. The book presents how machine learning is helpful in smooth conduction of administrative processes in hospitals, in treating infectious diseases, and in personalized medical treatments. The authors show how machine learning can also help make fast and more accurate disease diagnoses, easily identify patients, help in new types of therapies or treatments, model small-molecule drugs in pharmaceutical sector, and help with innovations via integrated technologies such as artificial intelligence as well as deep learning. The authors show how machine learning also improves the physician’s and doctor’s medical capabilities to better diagnosis their patients. This book illustrates advanced, innovative techniques, frameworks, concepts, and methodologies of machine learning that will enhance the efficiency and effectiveness of the healthcare system. Provides researchers in machine and deep learning with a conceptual understanding of various methodologies of implementing the technologies in medical areas; Discusses the role machine learning and IoT play into locating different virus and diseases across the globe, such as COVID-19, Ebola, and cervical cancer; Includes fundamentals and advances in machine learning in the medical field, supported by significant case studies and practical applications.
Publisher: Springer Nature
ISBN: 3030809285
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
This book discusses the applications, challenges, and future trends of machine learning in medical domain, including both basic and advanced topics. The book presents how machine learning is helpful in smooth conduction of administrative processes in hospitals, in treating infectious diseases, and in personalized medical treatments. The authors show how machine learning can also help make fast and more accurate disease diagnoses, easily identify patients, help in new types of therapies or treatments, model small-molecule drugs in pharmaceutical sector, and help with innovations via integrated technologies such as artificial intelligence as well as deep learning. The authors show how machine learning also improves the physician’s and doctor’s medical capabilities to better diagnosis their patients. This book illustrates advanced, innovative techniques, frameworks, concepts, and methodologies of machine learning that will enhance the efficiency and effectiveness of the healthcare system. Provides researchers in machine and deep learning with a conceptual understanding of various methodologies of implementing the technologies in medical areas; Discusses the role machine learning and IoT play into locating different virus and diseases across the globe, such as COVID-19, Ebola, and cervical cancer; Includes fundamentals and advances in machine learning in the medical field, supported by significant case studies and practical applications.
SDN-Supported Edge-Cloud Interplay for Next Generation Internet of Things
Author: Kshira Sagar Sahoo
Publisher: CRC Press
ISBN: 1000814831
Category : Computers
Languages : en
Pages : 221
Book Description
SDN-Supported Edge-Cloud Interplay for Next Generation Internet of Things is an invaluable resource coveringa wide range of research directions in the field of edge-cloud computing, SDN, and IoT. The integration of SDN in edge-cloud interplay is a promising framework for enhancing the QoS for complex IoT-driven applications. The interplay between cloud and edge solves some of the major challenges that arise in traditional IoT architecture. This book is a starting point for those involved in this research domain and explores a range of significant issues including network congestion, traffic management, latency, QoS, scalability, security, and controller placement problems. Features: The book covers emerging trends, issues and solutions in the direction of Edge-cloud interplay It highlights the research advances in on SDN, edge, and IoT architecture for smart cities, and software-defined internet of vehicles It includes detailed discussion has made of performance evaluations of SDN controllers, scalable software-defined edge computing, and AI for edge computing Applications areas include machine learning and deep learning in SDN-supported edge-cloud systems Different use cases covered include smart health care, smart city, internet of drones, etc This book is designed for scientific communities including graduate students, academicians, and industry professionals who are interested in exploring technologies related to the internet of things such as cloud, SDN, edge, internet of drones, etc.
Publisher: CRC Press
ISBN: 1000814831
Category : Computers
Languages : en
Pages : 221
Book Description
SDN-Supported Edge-Cloud Interplay for Next Generation Internet of Things is an invaluable resource coveringa wide range of research directions in the field of edge-cloud computing, SDN, and IoT. The integration of SDN in edge-cloud interplay is a promising framework for enhancing the QoS for complex IoT-driven applications. The interplay between cloud and edge solves some of the major challenges that arise in traditional IoT architecture. This book is a starting point for those involved in this research domain and explores a range of significant issues including network congestion, traffic management, latency, QoS, scalability, security, and controller placement problems. Features: The book covers emerging trends, issues and solutions in the direction of Edge-cloud interplay It highlights the research advances in on SDN, edge, and IoT architecture for smart cities, and software-defined internet of vehicles It includes detailed discussion has made of performance evaluations of SDN controllers, scalable software-defined edge computing, and AI for edge computing Applications areas include machine learning and deep learning in SDN-supported edge-cloud systems Different use cases covered include smart health care, smart city, internet of drones, etc This book is designed for scientific communities including graduate students, academicians, and industry professionals who are interested in exploring technologies related to the internet of things such as cloud, SDN, edge, internet of drones, etc.
Examining the Impact of Deep Learning and IoT on Multi-Industry Applications
Author: Raut, Roshani
Publisher: IGI Global
ISBN: 1799875172
Category : Computers
Languages : en
Pages : 304
Book Description
Deep learning, as a recent AI technique, has proven itself efficient in solving many real-world problems. Deep learning algorithms are efficient, high performing, and an effective standard for solving these problems. In addition, with IoT, deep learning is in many emerging and developing domains of computer technology. Deep learning algorithms have brought a revolution in computer vision applications by introducing an efficient solution to several image processing-related problems that have long remained unresolved or moderately solved. Various significant IoT technologies in various industries, such as education, health, transportation, and security, combine IoT with deep learning for complex problem solving and the supported interaction between human beings and their surroundings. Examining the Impact of Deep Learning and IoT on Multi-Industry Applications provides insights on how deep learning, together with IoT, impacts various sectors such as healthcare, agriculture, cyber security, and social media analysis applications. The chapters present solutions to various real-world problems using these methods from various researchers’ points of view. While highlighting topics such as medical diagnosis, power consumption, livestock management, security, and social media analysis, this book is ideal for IT specialists, technologists, security analysts, medical practitioners, imaging specialists, diagnosticians, academicians, researchers, industrial experts, scientists, and undergraduate and postgraduate students who are working in the field of computer engineering, electronics, and electrical engineering.
Publisher: IGI Global
ISBN: 1799875172
Category : Computers
Languages : en
Pages : 304
Book Description
Deep learning, as a recent AI technique, has proven itself efficient in solving many real-world problems. Deep learning algorithms are efficient, high performing, and an effective standard for solving these problems. In addition, with IoT, deep learning is in many emerging and developing domains of computer technology. Deep learning algorithms have brought a revolution in computer vision applications by introducing an efficient solution to several image processing-related problems that have long remained unresolved or moderately solved. Various significant IoT technologies in various industries, such as education, health, transportation, and security, combine IoT with deep learning for complex problem solving and the supported interaction between human beings and their surroundings. Examining the Impact of Deep Learning and IoT on Multi-Industry Applications provides insights on how deep learning, together with IoT, impacts various sectors such as healthcare, agriculture, cyber security, and social media analysis applications. The chapters present solutions to various real-world problems using these methods from various researchers’ points of view. While highlighting topics such as medical diagnosis, power consumption, livestock management, security, and social media analysis, this book is ideal for IT specialists, technologists, security analysts, medical practitioners, imaging specialists, diagnosticians, academicians, researchers, industrial experts, scientists, and undergraduate and postgraduate students who are working in the field of computer engineering, electronics, and electrical engineering.
Blockchain, Big Data and Machine Learning
Author: Neeraj Kumar
Publisher: CRC Press
ISBN: 1000163512
Category : Computers
Languages : en
Pages : 286
Book Description
Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in realizing the privacy and security of blockchain based data analytic environment. Recent research of security based on big data, blockchain and machine learning has been explained through actual work by practitioners and researchers, including their technical evaluation and comparison with existing technologies. The theoretical background and experimental case studies related to real-time environment are covered as well. Aimed at Senior undergraduate students, researchers and professionals in computer science and engineering and electrical engineering, this book: Converges Blockchain, Big Data and Machine learning in one volume. Connects Blockchain technologies with the data centric applications such Big data and E-Health. Easy to understand examples on how to create your own blockchain supported by case studies of blockchain in different industries. Covers big data analytics examples using R. Includes lllustrative examples in python for blockchain creation.
Publisher: CRC Press
ISBN: 1000163512
Category : Computers
Languages : en
Pages : 286
Book Description
Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in realizing the privacy and security of blockchain based data analytic environment. Recent research of security based on big data, blockchain and machine learning has been explained through actual work by practitioners and researchers, including their technical evaluation and comparison with existing technologies. The theoretical background and experimental case studies related to real-time environment are covered as well. Aimed at Senior undergraduate students, researchers and professionals in computer science and engineering and electrical engineering, this book: Converges Blockchain, Big Data and Machine learning in one volume. Connects Blockchain technologies with the data centric applications such Big data and E-Health. Easy to understand examples on how to create your own blockchain supported by case studies of blockchain in different industries. Covers big data analytics examples using R. Includes lllustrative examples in python for blockchain creation.
Wearable Telemedicine Technology for the Healthcare Industry
Author: Deepak Gupta
Publisher: Academic Press
ISBN: 0323858104
Category : Science
Languages : en
Pages : 194
Book Description
Wearable Telemedicine Technology for the Healthcare Industry: Product Design and Development focuses on recent advances and benefits of wearable telemedicine techniques for remote health monitoring and prevention of chronic conditions, providing real time feedback and help with rehabilitation and biomedical applications. Readers will learn about various techniques used by software engineers, computer scientists and biomedical engineers to apply intelligent systems, artificial intelligence, machine learning, virtual reality and augmented reality to gather, transmit, analyze and deliver real-time clinical and biological data to clinicians, patients and researchers. Wearable telemedicine technology is currently establishing its place with large-scale impact in many healthcare sectors because information about patient health conditions can be gathered anytime and anywhere outside of traditional clinical settings, hence saving time, money and even lives. - Provides readers with methods and applications for wearable devices for ubiquitous health and activity monitoring, wearable biosensors, wearable app development and management using machine learning techniques, and more - Integrates coverage of a number of key wearable technologies, such as ubiquitous textile systems for movement disorders, remote surgery using telemedicine, intelligent computing algorithms for smart wearable healthcare devices, blockchain, and more - Provides readers with in-depth coverage of wearable product design and development
Publisher: Academic Press
ISBN: 0323858104
Category : Science
Languages : en
Pages : 194
Book Description
Wearable Telemedicine Technology for the Healthcare Industry: Product Design and Development focuses on recent advances and benefits of wearable telemedicine techniques for remote health monitoring and prevention of chronic conditions, providing real time feedback and help with rehabilitation and biomedical applications. Readers will learn about various techniques used by software engineers, computer scientists and biomedical engineers to apply intelligent systems, artificial intelligence, machine learning, virtual reality and augmented reality to gather, transmit, analyze and deliver real-time clinical and biological data to clinicians, patients and researchers. Wearable telemedicine technology is currently establishing its place with large-scale impact in many healthcare sectors because information about patient health conditions can be gathered anytime and anywhere outside of traditional clinical settings, hence saving time, money and even lives. - Provides readers with methods and applications for wearable devices for ubiquitous health and activity monitoring, wearable biosensors, wearable app development and management using machine learning techniques, and more - Integrates coverage of a number of key wearable technologies, such as ubiquitous textile systems for movement disorders, remote surgery using telemedicine, intelligent computing algorithms for smart wearable healthcare devices, blockchain, and more - Provides readers with in-depth coverage of wearable product design and development