Author: Hervé This
Publisher: CRC Press
ISBN: 9781003298151
Category : Science
Languages : en
Pages : 0
Book Description
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: * Introduces readers to tips for experimental work * Shows how simple scientific knowledge can be applied in understanding questions * Provides a sound method ("strategy") for calculation in physics and chemistry * Presents important definitions and laws for physical chemistry * Gives confidence in one's calculation skill and problem solving skills * Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.
Calculating and Problem Solving Through Culinary Experimentation
Author: Hervé This
Publisher: CRC Press
ISBN: 9781003298151
Category : Science
Languages : en
Pages : 0
Book Description
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: * Introduces readers to tips for experimental work * Shows how simple scientific knowledge can be applied in understanding questions * Provides a sound method ("strategy") for calculation in physics and chemistry * Presents important definitions and laws for physical chemistry * Gives confidence in one's calculation skill and problem solving skills * Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.
Publisher: CRC Press
ISBN: 9781003298151
Category : Science
Languages : en
Pages : 0
Book Description
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: * Introduces readers to tips for experimental work * Shows how simple scientific knowledge can be applied in understanding questions * Provides a sound method ("strategy") for calculation in physics and chemistry * Presents important definitions and laws for physical chemistry * Gives confidence in one's calculation skill and problem solving skills * Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.
Calculating and Problem Solving Through Culinary Experimentation
Author: Hervé This vo Kientza
Publisher: CRC Press
ISBN: 1000656268
Category : Science
Languages : en
Pages : 334
Book Description
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: Introduces readers to tips for experimental work Shows how simple scientific knowledge can be applied in understanding questions Provides a sound method ("strategy") for calculation in physics and chemistry Presents important definitions and laws for physical chemistry Gives confidence in one’s calculation skill and problem solving skills Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.
Publisher: CRC Press
ISBN: 1000656268
Category : Science
Languages : en
Pages : 334
Book Description
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: Introduces readers to tips for experimental work Shows how simple scientific knowledge can be applied in understanding questions Provides a sound method ("strategy") for calculation in physics and chemistry Presents important definitions and laws for physical chemistry Gives confidence in one’s calculation skill and problem solving skills Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.
Calculating and Problem Solving Through Culinary Experimentation
Author: Hervé This vo Kientza
Publisher: CRC Press
ISBN: 1000682080
Category : Science
Languages : en
Pages : 315
Book Description
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: Introduces readers to tips for experimental work Shows how simple scientific knowledge can be applied in understanding questions Provides a sound method ("strategy") for calculation in physics and chemistry Presents important definitions and laws for physical chemistry Gives confidence in one’s calculation skill and problem solving skills Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.
Publisher: CRC Press
ISBN: 1000682080
Category : Science
Languages : en
Pages : 315
Book Description
While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: Introduces readers to tips for experimental work Shows how simple scientific knowledge can be applied in understanding questions Provides a sound method ("strategy") for calculation in physics and chemistry Presents important definitions and laws for physical chemistry Gives confidence in one’s calculation skill and problem solving skills Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.
Standing the Heat
Author: Joseph Hegarty
Publisher: Psychology Press
ISBN: 9780789018984
Category : Business & Economics
Languages : en
Pages : 184
Book Description
Chronicling the development of an undergraduate degree programme in culinary arts at the Dublin Institute of Technology, this book details the merger of a vocational education with a more cognitive education that prepares chefs to be more than more cooks.
Publisher: Psychology Press
ISBN: 9780789018984
Category : Business & Economics
Languages : en
Pages : 184
Book Description
Chronicling the development of an undergraduate degree programme in culinary arts at the Dublin Institute of Technology, this book details the merger of a vocational education with a more cognitive education that prepares chefs to be more than more cooks.
Computer Applications in Food Technology
Author: R. Paul Singh
Publisher: Elsevier
ISBN: 0080529712
Category : Computers
Languages : en
Pages : 317
Book Description
The Institute of Food Technologists (IFT) recently endorsed the use of computers in food science education. The minimum standards for degrees in food science, as suggested by IFT,"require the students to use computers in the solution of problems, the collection and analysis of data, the control processes, in addition to word processing."Because they are widely used in business, allow statistical and graphical of experimental data, and can mimic laboratory experimentation, spreadsheets provide an ideal tool for learning the important features of computers and programming. In addition, they are ideally suited for food science students, who usually do not have an extensive mathematical background.Drawing from the many courses he has taught at UC Davis, Dr. Singh covers the general basics of spreadsheets using examples specific to food science. He includes more than 50 solved problems drawn from key areas of food science, namely food microbiology, food chemistry, sensory evaluation, statistical quality control, and food engineering. Each problem is presented with the required equations and detailed steps necessary for programming the spreadsheet. Helpful hints in using the spreadsheets are also provided throughout the text.Key Features* The first book to integrate speadsheets in teaching food science and technology* Includes more than 50 solved examples of spreadsheet use in food science and engineering* Presents a step-by-step introduction to spreadsheet use* Provides a food composition database on a computer disk
Publisher: Elsevier
ISBN: 0080529712
Category : Computers
Languages : en
Pages : 317
Book Description
The Institute of Food Technologists (IFT) recently endorsed the use of computers in food science education. The minimum standards for degrees in food science, as suggested by IFT,"require the students to use computers in the solution of problems, the collection and analysis of data, the control processes, in addition to word processing."Because they are widely used in business, allow statistical and graphical of experimental data, and can mimic laboratory experimentation, spreadsheets provide an ideal tool for learning the important features of computers and programming. In addition, they are ideally suited for food science students, who usually do not have an extensive mathematical background.Drawing from the many courses he has taught at UC Davis, Dr. Singh covers the general basics of spreadsheets using examples specific to food science. He includes more than 50 solved problems drawn from key areas of food science, namely food microbiology, food chemistry, sensory evaluation, statistical quality control, and food engineering. Each problem is presented with the required equations and detailed steps necessary for programming the spreadsheet. Helpful hints in using the spreadsheets are also provided throughout the text.Key Features* The first book to integrate speadsheets in teaching food science and technology* Includes more than 50 solved examples of spreadsheet use in food science and engineering* Presents a step-by-step introduction to spreadsheet use* Provides a food composition database on a computer disk
Mathematical and Statistical Methods in Food Science and Technology
Author: Daniel Granato
Publisher: John Wiley & Sons
ISBN: 1118433688
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.
Publisher: John Wiley & Sons
ISBN: 1118433688
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.
Solubility in Supercritical Carbon Dioxide
Author: Ram B. Gupta
Publisher: CRC Press
ISBN: 1420005995
Category : Science
Languages : en
Pages : 960
Book Description
Supercritical fluid extraction is an environmentally safe and cost-effective alternative to traditional organic solvents. Carbon dioxide is widely used as the solvent of choice for applications such as caffeine and nicotine extraction due to its mild critical temperature, nontoxicity, nonflammability, and low cost. Introducing the most complete col
Publisher: CRC Press
ISBN: 1420005995
Category : Science
Languages : en
Pages : 960
Book Description
Supercritical fluid extraction is an environmentally safe and cost-effective alternative to traditional organic solvents. Carbon dioxide is widely used as the solvent of choice for applications such as caffeine and nicotine extraction due to its mild critical temperature, nontoxicity, nonflammability, and low cost. Introducing the most complete col
Science and Cooking: Physics Meets Food, From Homemade to Haute Cuisine
Author: Michael Brenner
Publisher: W. W. Norton & Company
ISBN: 0393634930
Category : Science
Languages : en
Pages : 376
Book Description
Based on the popular Harvard University and edX course, Science and Cooking explores the scientific basis of why recipes work. The spectacular culinary creations of modern cuisine are the stuff of countless articles and social media feeds. But to a scientist they are also perfect pedagogical explorations into the basic scientific principles of cooking. In Science and Cooking, Harvard professors Michael Brenner, Pia Sörensen, and David Weitz bring the classroom to your kitchen to teach the physics and chemistry underlying every recipe. Why do we knead bread? What determines the temperature at which we cook a steak, or the amount of time our chocolate chip cookies spend in the oven? Science and Cooking answers these questions and more through hands-on experiments and recipes from renowned chefs such as Christina Tosi, Joanne Chang, and Wylie Dufresne, all beautifully illustrated in full color. With engaging introductions from revolutionary chefs and collaborators Ferran Adria and José Andrés, Science and Cooking will change the way you approach both subjects—in your kitchen and beyond.
Publisher: W. W. Norton & Company
ISBN: 0393634930
Category : Science
Languages : en
Pages : 376
Book Description
Based on the popular Harvard University and edX course, Science and Cooking explores the scientific basis of why recipes work. The spectacular culinary creations of modern cuisine are the stuff of countless articles and social media feeds. But to a scientist they are also perfect pedagogical explorations into the basic scientific principles of cooking. In Science and Cooking, Harvard professors Michael Brenner, Pia Sörensen, and David Weitz bring the classroom to your kitchen to teach the physics and chemistry underlying every recipe. Why do we knead bread? What determines the temperature at which we cook a steak, or the amount of time our chocolate chip cookies spend in the oven? Science and Cooking answers these questions and more through hands-on experiments and recipes from renowned chefs such as Christina Tosi, Joanne Chang, and Wylie Dufresne, all beautifully illustrated in full color. With engaging introductions from revolutionary chefs and collaborators Ferran Adria and José Andrés, Science and Cooking will change the way you approach both subjects—in your kitchen and beyond.
Math in Society
Author: David Lippman
Publisher:
ISBN: 9781479276530
Category : Electronic books
Languages : en
Pages : 0
Book Description
Math in Society is a survey of contemporary mathematical topics, appropriate for a college-level topics course for liberal arts major, or as a general quantitative reasoning course.This book is an open textbook; it can be read free online at http://www.opentextbookstore.com/mathinsociety/. Editable versions of the chapters are available as well.
Publisher:
ISBN: 9781479276530
Category : Electronic books
Languages : en
Pages : 0
Book Description
Math in Society is a survey of contemporary mathematical topics, appropriate for a college-level topics course for liberal arts major, or as a general quantitative reasoning course.This book is an open textbook; it can be read free online at http://www.opentextbookstore.com/mathinsociety/. Editable versions of the chapters are available as well.
Fundamentals of Food Process Engineering
Author: Romeo T. Toledo
Publisher: Springer Science & Business Media
ISBN: 1461570522
Category : Technology & Engineering
Languages : en
Pages : 615
Book Description
Ten years after the publication of the first edition of Fundamentals of Food Process Engineering, there have been significant changes in both food science education and the food industry itself. Students now in the food science curric ulum are generally better prepared mathematically than their counterparts two decades ago. The food science curriculum in most schools in the United States has split into science and business options, with students in the science option following the Institute of Food Technologists' minimum requirements. The minimum requirements include the food engineering course, thus students en rolled in food engineering are generally better than average, and can be chal lenged with more rigor in the course material. The food industry itself has changed. Traditionally, the food industry has been primarily involved in the canning and freezing of agricultural commodi ties, and a company's operations generally remain within a single commodity. Now, the industry is becoming more diversified, with many companies involved in operations involving more than one type of commodity. A number of for mulated food products are now made where the commodity connection becomes obscure. The ability to solve problems is a valued asset in a technologist, and often, solving problems involves nothing more than applying principles learned in other areas to the problem at hand. A principle that may have been commonly used with one commodity may also be applied to another commodity to produce unique products.
Publisher: Springer Science & Business Media
ISBN: 1461570522
Category : Technology & Engineering
Languages : en
Pages : 615
Book Description
Ten years after the publication of the first edition of Fundamentals of Food Process Engineering, there have been significant changes in both food science education and the food industry itself. Students now in the food science curric ulum are generally better prepared mathematically than their counterparts two decades ago. The food science curriculum in most schools in the United States has split into science and business options, with students in the science option following the Institute of Food Technologists' minimum requirements. The minimum requirements include the food engineering course, thus students en rolled in food engineering are generally better than average, and can be chal lenged with more rigor in the course material. The food industry itself has changed. Traditionally, the food industry has been primarily involved in the canning and freezing of agricultural commodi ties, and a company's operations generally remain within a single commodity. Now, the industry is becoming more diversified, with many companies involved in operations involving more than one type of commodity. A number of for mulated food products are now made where the commodity connection becomes obscure. The ability to solve problems is a valued asset in a technologist, and often, solving problems involves nothing more than applying principles learned in other areas to the problem at hand. A principle that may have been commonly used with one commodity may also be applied to another commodity to produce unique products.