Author: Dragan P. Uskoković
Publisher: Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
ISBN: 8680321125
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
In the past several years, the accent of a number of scientific researches in the countries of the European Union, USA and Japan was focused on the field of biomaterials. Having the direct influence on the quality and longevity of human life, these researches receive significant funding. The bone tissue is an especially interesting subject of scientific research, as much for the frequent osteoporosis as for the formative nature of organism. Natural bone is mostly composed of nanostructural calcium phosphate (hydroxyapatite). Whether bone trauma was caused artificially or through illness, the number of reconstructions increases every year worldwide and thus the monetary investment into this field. Until now, numerous kinds of biomaterials were used for this purpose. Development of equipment and progress in characterization techniques and devices enabled an exponential development of new and advanced biomaterials’ synthesis. Many qualitative and quantitative content concepts and the organization of biomaterials on all structural levels were taken from nature. Biomaterials for the reconstruction of bone tissue, very similar to human tissue, in the form of composite blocks, injectable cements, nano-fillers, etc., were produced this way. Synthesis of calcium phosphate and hydroxyapatite, as well as the composite for the reconstruction of bone tissue, has been a significant research field of a section of Advanced Materials and Processes Department of the Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (ITS SASA) from Belgrade for a number of years. Apart from a number of published scientific papers in leading international journals, lectures presented at the leading universities worldwide, several PhD dissertations defended at various faculties in the land, and several domestic patents, researchers have established the basis of the technological procedure and the production of small series of various products developed in their laboratory. These researches have very wide aspect of significance – from fundamental, scientific to specifically applicative. It can be said that these researches include everything from synthesis, processing, characterization to their application. This book contains 44 papers published in SCI journals since 1999 until May 2007. It is divided into five sections and each assembles the most important results in the specific area: I Synthesis and Processing, II Synthesis, Properties and Characterization of Biomaterials, III Mechanical Properties and Modelling of Biomaterials, IV Biological Evaluation of Biomaterials, V Behaviour of Biomaterials under Radiation Field.
Calcium phosphate Ceramics - Bioresorbable Polymer Composite Biomaterials
Author: Dragan P. Uskoković
Publisher: Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
ISBN: 8680321125
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
In the past several years, the accent of a number of scientific researches in the countries of the European Union, USA and Japan was focused on the field of biomaterials. Having the direct influence on the quality and longevity of human life, these researches receive significant funding. The bone tissue is an especially interesting subject of scientific research, as much for the frequent osteoporosis as for the formative nature of organism. Natural bone is mostly composed of nanostructural calcium phosphate (hydroxyapatite). Whether bone trauma was caused artificially or through illness, the number of reconstructions increases every year worldwide and thus the monetary investment into this field. Until now, numerous kinds of biomaterials were used for this purpose. Development of equipment and progress in characterization techniques and devices enabled an exponential development of new and advanced biomaterials’ synthesis. Many qualitative and quantitative content concepts and the organization of biomaterials on all structural levels were taken from nature. Biomaterials for the reconstruction of bone tissue, very similar to human tissue, in the form of composite blocks, injectable cements, nano-fillers, etc., were produced this way. Synthesis of calcium phosphate and hydroxyapatite, as well as the composite for the reconstruction of bone tissue, has been a significant research field of a section of Advanced Materials and Processes Department of the Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (ITS SASA) from Belgrade for a number of years. Apart from a number of published scientific papers in leading international journals, lectures presented at the leading universities worldwide, several PhD dissertations defended at various faculties in the land, and several domestic patents, researchers have established the basis of the technological procedure and the production of small series of various products developed in their laboratory. These researches have very wide aspect of significance – from fundamental, scientific to specifically applicative. It can be said that these researches include everything from synthesis, processing, characterization to their application. This book contains 44 papers published in SCI journals since 1999 until May 2007. It is divided into five sections and each assembles the most important results in the specific area: I Synthesis and Processing, II Synthesis, Properties and Characterization of Biomaterials, III Mechanical Properties and Modelling of Biomaterials, IV Biological Evaluation of Biomaterials, V Behaviour of Biomaterials under Radiation Field.
Publisher: Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
ISBN: 8680321125
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
In the past several years, the accent of a number of scientific researches in the countries of the European Union, USA and Japan was focused on the field of biomaterials. Having the direct influence on the quality and longevity of human life, these researches receive significant funding. The bone tissue is an especially interesting subject of scientific research, as much for the frequent osteoporosis as for the formative nature of organism. Natural bone is mostly composed of nanostructural calcium phosphate (hydroxyapatite). Whether bone trauma was caused artificially or through illness, the number of reconstructions increases every year worldwide and thus the monetary investment into this field. Until now, numerous kinds of biomaterials were used for this purpose. Development of equipment and progress in characterization techniques and devices enabled an exponential development of new and advanced biomaterials’ synthesis. Many qualitative and quantitative content concepts and the organization of biomaterials on all structural levels were taken from nature. Biomaterials for the reconstruction of bone tissue, very similar to human tissue, in the form of composite blocks, injectable cements, nano-fillers, etc., were produced this way. Synthesis of calcium phosphate and hydroxyapatite, as well as the composite for the reconstruction of bone tissue, has been a significant research field of a section of Advanced Materials and Processes Department of the Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (ITS SASA) from Belgrade for a number of years. Apart from a number of published scientific papers in leading international journals, lectures presented at the leading universities worldwide, several PhD dissertations defended at various faculties in the land, and several domestic patents, researchers have established the basis of the technological procedure and the production of small series of various products developed in their laboratory. These researches have very wide aspect of significance – from fundamental, scientific to specifically applicative. It can be said that these researches include everything from synthesis, processing, characterization to their application. This book contains 44 papers published in SCI journals since 1999 until May 2007. It is divided into five sections and each assembles the most important results in the specific area: I Synthesis and Processing, II Synthesis, Properties and Characterization of Biomaterials, III Mechanical Properties and Modelling of Biomaterials, IV Biological Evaluation of Biomaterials, V Behaviour of Biomaterials under Radiation Field.
Bone Tissue Engineering
Author: Jeffrey O. Hollinger
Publisher: CRC Press
ISBN: 1135501912
Category : Medical
Languages : en
Pages : 462
Book Description
Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t
Publisher: CRC Press
ISBN: 1135501912
Category : Medical
Languages : en
Pages : 462
Book Description
Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t
Calcium Orthophosphates
Author: Sergey V. Dorozhkin
Publisher: CRC Press
ISBN: 9814364177
Category : Science
Languages : en
Pages : 863
Book Description
Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium orthophospha
Publisher: CRC Press
ISBN: 9814364177
Category : Science
Languages : en
Pages : 863
Book Description
Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium orthophospha
Bioceramics and their Clinical Applications
Author: Tadashi Kokubo
Publisher: Elsevier
ISBN: 1845694228
Category : Science
Languages : en
Pages : 785
Book Description
Bioceramics have been used very successfully within the human body for many years. They are commonly used in orthopaedic surgery and dentistry but they are potentially suitable for a wide range of important applications within the medical device industry. This important book reviews the range of bioceramics, their properties and range of clinical uses.Chapters in the first section of the book discusses issues of significance to a range of bioceramics such as their structure, mechanical properties and biological interactions. The second part reviews the fabrication, microstructure and properties of specific bioceramics and glasses, concentrating on the most promising materials. These include alumina and zirconia ceramics, bioactive glasses and bioactive glass-ceramics, calcium sulphate, tricalcium phosphate-based ceramics, hydroxyapatite, tricalcium phosphate/hydroxyapatite biphasic ceramics, si-substrated hydroxyapatite, calcium phosphate cement, calcium phosphate coating, titania-based materials, ceramic-polymer composites, dental ceramics and dental glass-ceramics. The final group of chapters reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry.Bioceramics and their clinical applications is written by leading academics from around the world and it provides an authoritative review of this highly active area of research. This book is a useful resource for biomaterials scientists and engineers, as well as for clinicians and the academic community. - Provides an authoritative review of this highly active area of research - Discusses issues of significance of a range of bioceramics such as their structure, mechanical properties and biological interactions - Reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry
Publisher: Elsevier
ISBN: 1845694228
Category : Science
Languages : en
Pages : 785
Book Description
Bioceramics have been used very successfully within the human body for many years. They are commonly used in orthopaedic surgery and dentistry but they are potentially suitable for a wide range of important applications within the medical device industry. This important book reviews the range of bioceramics, their properties and range of clinical uses.Chapters in the first section of the book discusses issues of significance to a range of bioceramics such as their structure, mechanical properties and biological interactions. The second part reviews the fabrication, microstructure and properties of specific bioceramics and glasses, concentrating on the most promising materials. These include alumina and zirconia ceramics, bioactive glasses and bioactive glass-ceramics, calcium sulphate, tricalcium phosphate-based ceramics, hydroxyapatite, tricalcium phosphate/hydroxyapatite biphasic ceramics, si-substrated hydroxyapatite, calcium phosphate cement, calcium phosphate coating, titania-based materials, ceramic-polymer composites, dental ceramics and dental glass-ceramics. The final group of chapters reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry.Bioceramics and their clinical applications is written by leading academics from around the world and it provides an authoritative review of this highly active area of research. This book is a useful resource for biomaterials scientists and engineers, as well as for clinicians and the academic community. - Provides an authoritative review of this highly active area of research - Discusses issues of significance of a range of bioceramics such as their structure, mechanical properties and biological interactions - Reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry
Hydroxyapatite (HAp) for Biomedical Applications
Author: Michael Mucalo
Publisher: Elsevier
ISBN: 178242041X
Category : Medical
Languages : en
Pages : 402
Book Description
Hydroxyapatite in the form of hydroxycarbonate apatite is the principal mineral component of bone tissue in mammals. In Bioceramics, it is classed as a bioactive material, which means bone tissue grows directly on it when placed in apposition without intervening fibrous tissue. Hydroxyapatite is hence commonly used as bone grafts, fillers and as coatings for metal implants. This important book provides an overview of the most recent research and developments involving hydroxyapatite as a key material in medicine and its application. - Reviews the important properties of hydroxyapatite as a biomaterial - Considers a range of specific forms of the material and their advantages - Reviews a range of specific medical applications for this important material
Publisher: Elsevier
ISBN: 178242041X
Category : Medical
Languages : en
Pages : 402
Book Description
Hydroxyapatite in the form of hydroxycarbonate apatite is the principal mineral component of bone tissue in mammals. In Bioceramics, it is classed as a bioactive material, which means bone tissue grows directly on it when placed in apposition without intervening fibrous tissue. Hydroxyapatite is hence commonly used as bone grafts, fillers and as coatings for metal implants. This important book provides an overview of the most recent research and developments involving hydroxyapatite as a key material in medicine and its application. - Reviews the important properties of hydroxyapatite as a biomaterial - Considers a range of specific forms of the material and their advantages - Reviews a range of specific medical applications for this important material
Bioceramics and Biocomposites
Author: Iulian Antoniac
Publisher: John Wiley & Sons
ISBN: 1119372143
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Provides comprehensive coverage of the research into and clinical uses of bioceramics and biocomposites Developments related to bioceramics and biocomposites appear to be one the most dynamic areas in the field of biomaterials, with multiple applications in tissue engineering and medical devices. This book covers the basic science and engineering of bioceramics and biocomposites for applications in dentistry and orthopedics, as well as the state-of-the-art aspects of biofabrication techniques, tissue engineering, remodeling, and regeneration of bone tissue. It also provides insight into the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Featuring contributions from leading experts in the field, Bioceramics and Biocomposites: From Research to Use in Clinical Practice offers complete coverage of everything from extending the concept of hemopoietic and stromal niches, to the evolution of bioceramic-based scaffolds. It looks at perspectives on and trends in bioceramics in endodontics, and discusses the influence of newer biomaterials use on the structuring of the clinician’s attitude in dental practice or in orthopedic surgery. The book also covers such topics as biofabrication techniques for bioceramics and biocomposites; glass ceramics: calcium phosphate coatings; brain drug delivery bone substitutes; and much more. Presents the biggest trends in bioceramics and biocomposites relating to medical devices and tissue engineering products Systematically presents new information about bioceramics and biocomposites, developing diagnostics and improving treatments and their influence on the clinicians' approaches Describes how to use these biomaterials to create new functionalities when interfaced with biological molecules or structures Offers a range of applications in clinical practice, including bone tissue engineering, remodeling, and regeneration Delineates essential requirements for resorbable bioceramics Discusses clinical results obtained in dental and orthopedic applications Bioceramics and Biocomposites: From Research to Use in Clinical Practice is an excellent resource for biomaterials scientists and engineers, bioengineers, materials scientists, and engineers. It will also benefit mechanical engineers and biochemists who work with biomaterials scientists.
Publisher: John Wiley & Sons
ISBN: 1119372143
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Provides comprehensive coverage of the research into and clinical uses of bioceramics and biocomposites Developments related to bioceramics and biocomposites appear to be one the most dynamic areas in the field of biomaterials, with multiple applications in tissue engineering and medical devices. This book covers the basic science and engineering of bioceramics and biocomposites for applications in dentistry and orthopedics, as well as the state-of-the-art aspects of biofabrication techniques, tissue engineering, remodeling, and regeneration of bone tissue. It also provides insight into the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Featuring contributions from leading experts in the field, Bioceramics and Biocomposites: From Research to Use in Clinical Practice offers complete coverage of everything from extending the concept of hemopoietic and stromal niches, to the evolution of bioceramic-based scaffolds. It looks at perspectives on and trends in bioceramics in endodontics, and discusses the influence of newer biomaterials use on the structuring of the clinician’s attitude in dental practice or in orthopedic surgery. The book also covers such topics as biofabrication techniques for bioceramics and biocomposites; glass ceramics: calcium phosphate coatings; brain drug delivery bone substitutes; and much more. Presents the biggest trends in bioceramics and biocomposites relating to medical devices and tissue engineering products Systematically presents new information about bioceramics and biocomposites, developing diagnostics and improving treatments and their influence on the clinicians' approaches Describes how to use these biomaterials to create new functionalities when interfaced with biological molecules or structures Offers a range of applications in clinical practice, including bone tissue engineering, remodeling, and regeneration Delineates essential requirements for resorbable bioceramics Discusses clinical results obtained in dental and orthopedic applications Bioceramics and Biocomposites: From Research to Use in Clinical Practice is an excellent resource for biomaterials scientists and engineers, bioengineers, materials scientists, and engineers. It will also benefit mechanical engineers and biochemists who work with biomaterials scientists.
Bone Repair Biomaterials
Author: Kendell Pawelec
Publisher: Woodhead Publishing
ISBN: 0081024525
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
Bone Repair Biomaterials: Regeneration and Clinical Applications, Second Edition, provides comprehensive reviews on materials science, engineering principles and recent advances. Sections review the fundamentals of bone repair and regeneration, discuss the science and properties of biomaterials used for bone repair, including metals, ceramics, polymers and composites, and discuss clinical applications and considerations, with chapters on such topics as orthopedic surgery, tissue engineering, implant retrieval, and ethics of bone repair biomaterials. This second edition includes more chapters on relevant biomaterials and a greatly expanded section on clinical applications, including bone repair applications in dental surgery, spinal surgery, and maxilo-facial and skull surgery. In addition, the book features coverage of long-term performance and failure of orthopedic devices. It will be an invaluable resource for researchers, scientists and clinicians concerned with the repair and restoration of bone. - Provides a comprehensive review of the materials science, engineering principles and recent advances in this important area - Presents new chapters on Surface coating of titanium, using bone repair materials in dental, spinal and maxilo-facial and skull surgery, and advanced manufacturing/3D printing - Reviews the fundamentals of bone repair and regeneration, addressing social, economic and clinical challenges - Examines the properties of biomaterials used for bone repair, with specific chapters assessing metals, ceramics, polymers and composites
Publisher: Woodhead Publishing
ISBN: 0081024525
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
Bone Repair Biomaterials: Regeneration and Clinical Applications, Second Edition, provides comprehensive reviews on materials science, engineering principles and recent advances. Sections review the fundamentals of bone repair and regeneration, discuss the science and properties of biomaterials used for bone repair, including metals, ceramics, polymers and composites, and discuss clinical applications and considerations, with chapters on such topics as orthopedic surgery, tissue engineering, implant retrieval, and ethics of bone repair biomaterials. This second edition includes more chapters on relevant biomaterials and a greatly expanded section on clinical applications, including bone repair applications in dental surgery, spinal surgery, and maxilo-facial and skull surgery. In addition, the book features coverage of long-term performance and failure of orthopedic devices. It will be an invaluable resource for researchers, scientists and clinicians concerned with the repair and restoration of bone. - Provides a comprehensive review of the materials science, engineering principles and recent advances in this important area - Presents new chapters on Surface coating of titanium, using bone repair materials in dental, spinal and maxilo-facial and skull surgery, and advanced manufacturing/3D printing - Reviews the fundamentals of bone repair and regeneration, addressing social, economic and clinical challenges - Examines the properties of biomaterials used for bone repair, with specific chapters assessing metals, ceramics, polymers and composites
Handbook of Bioceramics and Biocomposites
Author: Iulian Vasile Antoniac
Publisher: Springer
ISBN: 9783319124599
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This handbook describes several current trends in the development of bioceramics and biocomposites for clinical use in the repair, remodelling, and regeneration of bone tissue. Comprehensive coverage of these materials allows fundamental aspects of the science and engineering to be seen in close relation to the clinical performance of dental and orthopaedic implants. Bioceramics and biocomposites appear to be the most dynamic area of materials development for both tissue engineering and implantable medical devices. Almost all medical specialties will continue to benefit from these developments, but especially dentistry and orthopaedics. In this Handbook, leading researchers describe the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Also described are technologies for bioceramics and biocomposites processing in order to fabricate medical devices for clinical use. Another important section of the book is dedicated to tissue regeneration with development of new matrices. A targeted or personalized treatment device reduces drug consumption and treatment expenses, resulting in benefits to the patient and cost reductions for public health systems. This authoritative reference on the state-of-the-art in the development and use of bioceramics and biocomposites can also serve as the basis of instructional course lectures for audiences ranging from advanced undergraduate students to post-graduates in materials science and engineering and biomedical engineering.
Publisher: Springer
ISBN: 9783319124599
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This handbook describes several current trends in the development of bioceramics and biocomposites for clinical use in the repair, remodelling, and regeneration of bone tissue. Comprehensive coverage of these materials allows fundamental aspects of the science and engineering to be seen in close relation to the clinical performance of dental and orthopaedic implants. Bioceramics and biocomposites appear to be the most dynamic area of materials development for both tissue engineering and implantable medical devices. Almost all medical specialties will continue to benefit from these developments, but especially dentistry and orthopaedics. In this Handbook, leading researchers describe the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Also described are technologies for bioceramics and biocomposites processing in order to fabricate medical devices for clinical use. Another important section of the book is dedicated to tissue regeneration with development of new matrices. A targeted or personalized treatment device reduces drug consumption and treatment expenses, resulting in benefits to the patient and cost reductions for public health systems. This authoritative reference on the state-of-the-art in the development and use of bioceramics and biocomposites can also serve as the basis of instructional course lectures for audiences ranging from advanced undergraduate students to post-graduates in materials science and engineering and biomedical engineering.
Chemically Bonded Phosphate Ceramics
Author: Arun S. Wagh
Publisher: Elsevier
ISBN: 008100396X
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Chemically Bonded Phosphate Ceramics brings together the latest developments in chemically bonded phosphate ceramics (CBPCs), including several novel ceramics, from US Federal Laboratories such as Argonne, Oak Ridge, and Brookhaven National Laboratories, as well as Russian and Ukrainian nuclear institutes. Coupled with further advances in their use as biomaterials, these materials have found uses in diverse fields in recent years. Applications range from advanced structural materials to corrosion and fire protection coatings, oil-well cements, stabilization and encapsulation of hazardous and radioactive waste, nuclear radiation shielding materials, and products designed for safe storage of nuclear materials. Such developments call for a single source to cover their science and applications. This book is a unique and comprehensive source to fulfil that need. In the second edition, the author covers the latest developments in nuclear waste containment and introduces new products and applications in areas such as biomedical implants, cements and coatings used in oil-well and other petrochemical applications, and flame-retardant anti-corrosion coatings. - Explores the key applications of CBPCs including nuclear waste storage, oil-well cements, anticorrosion coatings and biomedical implants - Demystifies the chemistry, processes and production methods of CBPCs - Draws on 40 years of developments and applications in the field, including the latest developments from USA, Europe, Ukraine, Russia, China and India
Publisher: Elsevier
ISBN: 008100396X
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Chemically Bonded Phosphate Ceramics brings together the latest developments in chemically bonded phosphate ceramics (CBPCs), including several novel ceramics, from US Federal Laboratories such as Argonne, Oak Ridge, and Brookhaven National Laboratories, as well as Russian and Ukrainian nuclear institutes. Coupled with further advances in their use as biomaterials, these materials have found uses in diverse fields in recent years. Applications range from advanced structural materials to corrosion and fire protection coatings, oil-well cements, stabilization and encapsulation of hazardous and radioactive waste, nuclear radiation shielding materials, and products designed for safe storage of nuclear materials. Such developments call for a single source to cover their science and applications. This book is a unique and comprehensive source to fulfil that need. In the second edition, the author covers the latest developments in nuclear waste containment and introduces new products and applications in areas such as biomedical implants, cements and coatings used in oil-well and other petrochemical applications, and flame-retardant anti-corrosion coatings. - Explores the key applications of CBPCs including nuclear waste storage, oil-well cements, anticorrosion coatings and biomedical implants - Demystifies the chemistry, processes and production methods of CBPCs - Draws on 40 years of developments and applications in the field, including the latest developments from USA, Europe, Ukraine, Russia, China and India
Characterization of Biomaterials
Author: Amit Bandyopadhyay
Publisher: Newnes
ISBN: 0124158633
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
One of the key challenges current biomaterials researchers face is identifying which of the dizzying number of highly specialized characterization tools can be gainfully applied to different materials and biomedical devices. Since this diverse marketplace of tools and techniques can be used for numerous applications, choosing the proper characterization tool is highly important, saving both time and resources.Characterization of Biomaterials is a detailed and multidisciplinary discussion of the physical, chemical, mechanical, surface, in vitro and in vivo characterization tools and techniques of increasing importance to fundamental biomaterials research.Characterization of Biomaterials will serve as a comprehensive resource for biomaterials researchers requiring detailed information on physical, chemical, mechanical, surface, and in vitro or in vivo characterization. The book is designed for materials scientists, bioengineers, biologists, clinicians and biomedical device researchers seeking input on planning on how to test their novel materials, structures or biomedical devices to a specific application. Chapters are developed considering the need for industrial researchers as well as academics. - Biomaterials researchers come from a wide variety of disciplines: this book will help them to analyze their materials and devices taking advantage of the multiple experiences on offer - Coverage encompasses a cross-section of the physical sciences, biological sciences, engineering and applied sciences characterization community, providing gainful and cross-cutting insight into this highly multi-disciplinary field - Detailed coverage of important test protocols presents specific examples and standards for applied characterization
Publisher: Newnes
ISBN: 0124158633
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
One of the key challenges current biomaterials researchers face is identifying which of the dizzying number of highly specialized characterization tools can be gainfully applied to different materials and biomedical devices. Since this diverse marketplace of tools and techniques can be used for numerous applications, choosing the proper characterization tool is highly important, saving both time and resources.Characterization of Biomaterials is a detailed and multidisciplinary discussion of the physical, chemical, mechanical, surface, in vitro and in vivo characterization tools and techniques of increasing importance to fundamental biomaterials research.Characterization of Biomaterials will serve as a comprehensive resource for biomaterials researchers requiring detailed information on physical, chemical, mechanical, surface, and in vitro or in vivo characterization. The book is designed for materials scientists, bioengineers, biologists, clinicians and biomedical device researchers seeking input on planning on how to test their novel materials, structures or biomedical devices to a specific application. Chapters are developed considering the need for industrial researchers as well as academics. - Biomaterials researchers come from a wide variety of disciplines: this book will help them to analyze their materials and devices taking advantage of the multiple experiences on offer - Coverage encompasses a cross-section of the physical sciences, biological sciences, engineering and applied sciences characterization community, providing gainful and cross-cutting insight into this highly multi-disciplinary field - Detailed coverage of important test protocols presents specific examples and standards for applied characterization