Bulk Crystal and Thin Film Formation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Bulk Crystal and Thin Film Formation PDF full book. Access full book title Bulk Crystal and Thin Film Formation by Sharon Levine. Download full books in PDF and EPUB format.

Bulk Crystal and Thin Film Formation

Bulk Crystal and Thin Film Formation PDF Author: Sharon Levine
Publisher:
ISBN: 9781632380678
Category :
Languages : en
Pages : 0

Book Description
In present-day research and development, materials manufacturing crystal growth is referred to as a method to solve a broad spectrum of technological tasks in the fabrications of materials with stipulated properties. This all-inclusive book enables a reader to achieve insight into essential characteristics of the field, including formation of thin films, crystallization of proteins, rise of bulk organic crystals, low-dimensional structures, and other organic compounds.

Bulk Crystal and Thin Film Formation

Bulk Crystal and Thin Film Formation PDF Author: Sharon Levine
Publisher:
ISBN: 9781632380678
Category :
Languages : en
Pages : 0

Book Description
In present-day research and development, materials manufacturing crystal growth is referred to as a method to solve a broad spectrum of technological tasks in the fabrications of materials with stipulated properties. This all-inclusive book enables a reader to achieve insight into essential characteristics of the field, including formation of thin films, crystallization of proteins, rise of bulk organic crystals, low-dimensional structures, and other organic compounds.

Advances in Bulk Crystal and Thin Film Formation

Advances in Bulk Crystal and Thin Film Formation PDF Author: Sharon Levine
Publisher:
ISBN: 9781632380296
Category :
Languages : en
Pages : 0

Book Description
In contemporary research and development, materials manufacturing crystal growth is referred to as a method to solve a broad spectrum of technological tasks in the fabrications of materials with stipulated properties. This all-inclusive profound book enables a reader to achieve insight into essential characteristics of the field. It includes important topics under the section bulk crystal growth.

Modern Aspects of Bulk Crystal and Thin Film Preparation

Modern Aspects of Bulk Crystal and Thin Film Preparation PDF Author: Nikolai Kolesnikov
Publisher: BoD – Books on Demand
ISBN: 9533076100
Category : Science
Languages : en
Pages : 622

Book Description
In modern research and development, materials manufacturing crystal growth is known as a way to solve a wide range of technological tasks in the fabrication of materials with preset properties. This book allows a reader to gain insight into selected aspects of the field, including growth of bulk inorganic crystals, preparation of thin films, low-dimensional structures, crystallization of proteins, and other organic compounds.

Handbook of Crystal Growth

Handbook of Crystal Growth PDF Author: Peter Rudolph
Publisher: Elsevier
ISBN: 0444633065
Category : Science
Languages : en
Pages : 1420

Book Description
Vol 2A: Basic TechnologiesHandbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated.Vol 2B: Growth Mechanisms and DynamicsHandbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy. Volume 2A Presents the status and future of Czochralski and float zone growth of dislocation-free silicon Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B Explores capillarity control of the crystal shape at the growth from the melt Highlights modeling of heat and mass transport dynamics Discusses control of convective melt processes by magnetic fields and vibration measures Includes imperative information on the segregation phenomenon and validation of compositional homogeneity Examines crystal defect generation mechanisms and their controllability Illustrates proper automation modes for ensuring constant crystal growth process Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries

Springer Handbook of Crystal Growth

Springer Handbook of Crystal Growth PDF Author: Govindhan Dhanaraj
Publisher: Springer Science & Business Media
ISBN: 3540747613
Category : Science
Languages : en
Pages : 1823

Book Description
Over the years, many successful attempts have been chapters in this part describe the well-known processes made to describe the art and science of crystal growth, such as Czochralski, Kyropoulos, Bridgman, and o- and many review articles, monographs, symposium v- ing zone, and focus speci cally on recent advances in umes, and handbooks have been published to present improving these methodologies such as application of comprehensive reviews of the advances made in this magnetic elds, orientation of the growth axis, intro- eld. These publications are testament to the grow- duction of a pedestal, and shaped growth. They also ing interest in both bulk and thin- lm crystals because cover a wide range of materials from silicon and III–V of their electronic, optical, mechanical, microstructural, compounds to oxides and uorides. and other properties, and their diverse scienti c and The third part, Part C of the book, focuses on - technological applications. Indeed, most modern ad- lution growth. The various aspects of hydrothermal vances in semiconductor and optical devices would growth are discussed in two chapters, while three other not have been possible without the development of chapters present an overview of the nonlinear and laser many elemental, binary, ternary, and other compound crystals, KTP and KDP. The knowledge on the effect of crystals of varying properties and large sizes. The gravity on solution growth is presented through a c- literature devoted to basic understanding of growth parison of growth on Earth versus in a microgravity mechanisms, defect formation, and growth processes environment.

A Theoretical and Experimental Study Into the Kinetics of Solution Phase Thin Film Deposition

A Theoretical and Experimental Study Into the Kinetics of Solution Phase Thin Film Deposition PDF Author: Cyrus Schaaf
Publisher:
ISBN:
Category : Chemical kinetics
Languages : en
Pages : 0

Book Description
The performance of electronic and optoelectronic devices based on solution-processed organic semiconductor layers is strongly influenced by their mesoscale polycrystalline structure, including domain size and spatial distributions. In solution-processed films prepared by spin casting, solvent-based printing, and related methods, morphology is governed by a combination of interrelated thermodynamic and kinetic factors. Classical models of crystal formation in bulk solution or on bare surfaces in vacuum-deposited films fail to adequately capture these effects; the current theoretical understanding of crystallization in solution-deposited films is generally unable to provide much insight, let alone predictive design guidance for tailoring films with specific structural characteristics for a given set of experimental conditions and chemical properties. In this thesis solution-phase thin film formation has been studied for the purpose of developing and new experimental techniques new models for understanding and predicting mesoscale film structure and crystal morphology. I will describe how nucleation can be modeled, and the predictions tested against experiment, by an approach that enables quantitative prediction of crystal coverage and intercrystalline spacing statistics as a function of processing conditions, using only a small number of experimentally-measureable parameters. To do this, a model is introduced that combines a mean-field rate equation treatment of monomer aggregation kinetics with classical nucleation theory and a supersaturation-dependent critical nucleus size to solve for the quasi-two-dimensional temporally- and spatially-varying monomer concentration and nucleation rate. Excellent agreement is observed with measured nucleation densities and inter-domain radial distribution functions in submonolayer tetracene films. The model leads to the first universal set of predictive design rules for solution-phase thin film growth capable of guiding the selection of experimental conditions for truly engineered morphological control. Accompanying this theoretical work a first of its kind experiment is also reported, in which monomer concentration has been spatially and temporally mapped in real time during the film formation process. Through the use of high resolution dark field fluorescence microscopy employing an internal fluorescent standard and multi-wavelength imaging optics the concentration dependence is visualized throughout all regimes of thin film formation. In situ measurements of local concentration contributes to the development of models which treat the role of variations in monomer concentration on mesoscale film morphology of polycrystalline thin films. This work opens the door to numerous studies enabling further development of models which allow for predictive control of polycrystalline thin films in solution-phase deposition techniques. In addition to nucleation, growth of crystalline films is modeled through a set of numerical and computational methods which provide insight into the main factors influencing crystal growth habit. It is shown that crystal capture rate correlation with physical properties displays a distinct lack of agreement between the spacing and initial sizes of crystals with their relative growth rates. This lack of correlation points to the need for more sophisticated models. Through the use of a mean field numerical calculation of the volumetric growth rate changes in crystal morphology can be attributed to a variable sticking probability which depends on the crystal face. Kinetic Monte Carlo simulations are used to directly probe the physics which explain the deviation from the typical single sticking coefficient capture model. The change in shape at long deposition times further suggests that crystal growth occurs in distinct regimes which dictate the final morphology of the crystals. This work provides an explanation to the change in shape of crystalline material at long deposition times which can be used to develop models to predict final crystal morphology. This thesis is comprised of several parts. In the first chapter the broader context of the work is discussed. In chapter 2, I discuss the scientific background laying the foundation for theoretical models into solution-phase deposition. In the third chapter, I describe the experimental system as well as results from various measurements of fundamental chemical and physical properties needed later. The fourth chapter describes a set of models which I have developed to predict mesoscale film structure to create a set of universal design rules in order to engineer thin films grown in the solution-phase. In chapter 5, I describe a state of the art experimental set up allowing for monomer concentration to be mapped in real time. Finally in the last chapter I describe a set of exploratory models to describe change in crystal morphology during the course of thin film formation. This thesis creates new understanding, which will allow for an increase in production of thin films for applications where strict control over domain size, shape, spacing, and crystallographic orientation.

Science and Technology of Thin Films

Science and Technology of Thin Films PDF Author: F. C. Matacotta
Publisher: World Scientific
ISBN: 9810221932
Category : Science
Languages : en
Pages : 369

Book Description
This book brings together detailed discussions by leading experts on the various innovative aspects of thin films growth, deposition and characterization techniques, and new thin film materials and devices. It addresses through the different viewpoints of the contributors, the major problem of thin films science - the relation between the energy of the condensing species and the resulting properties of the films. Some of the issues considered include energetic condensation, bombardment stabilization, pulsed electron beam ablation, orientation and self-organization of organic, ferroelectric and nanoparticle thin films. Several chapters focus on applications such as the recent developments in organic optoelectronics, large area electronic technology and superconducting thin film devices.

Preparation and Properties of Thin Films

Preparation and Properties of Thin Films PDF Author: K. N. Tu
Publisher: Elsevier
ISBN: 1483218295
Category : Technology & Engineering
Languages : en
Pages : 351

Book Description
Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properties of thin films on substrates. The ion beam modification of thin film; the use of thin alloy films for metallization in microelectronic devices; and the fabrication and physical properties of ultrasmall structures are also encompassed. Materials scientists and materials engineers will find the book invaluable.

Thin Film Physics

Thin Film Physics PDF Author: O. S. Heavens
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 168

Book Description


Lithium Niobate-Based Heterostructures

Lithium Niobate-Based Heterostructures PDF Author: SUMETS
Publisher: Iph001
ISBN: 9780750317276
Category : Science
Languages : en
Pages : 0

Book Description
With the use of ferroelectric materials in memory devices and the need for high-speed integrated optics devices, interest in ferroelectric thin films continues to grow. With their remarkable properties, such as energy nonvolatility, fast switching, radiative stability and unique optoacoustic and optoelectronic properties, Lithium Niobate-Based Heterostructures: Synthesis, properties and electron phenomena discusses why lithium niobate (LiNbO3) is one of the most promising of all ferroelectric materials. Based on years of study, this book presents the systematic characterization of substructure and electronic properties of a heterosystem formed in the deposition process of lithium niobate films onto the surface of silicon wafers.