Author: Daniel Zelterman
Publisher: Cambridge University Press
ISBN: 1108786545
Category : Medical
Languages : en
Pages : 296
Book Description
This textbook for students in the health and social sciences covers the basics of linear model methods with a minimum of mathematics, assuming only a pre-calculus background. Numerous examples drawn from the news and current events with an emphasis on health issues, illustrate the concepts in an immediately accessible way. Methods covered include linear regression models, Poisson regression, logistic regression, proportional hazards regression, survival analysis, and nonparametric regression. The author emphasizes interpretation of computer output in terms of the motivating example. All of the R code is provided and carefully explained, allowing readers to quickly apply the methods to their own data. Plenty of exercises help students think about the issues involved in the analysis and its interpretation. Code and datasets are available for download from the book's website at www.cambridge.org/zelterman
Regression for Health and Social Science
Author: Daniel Zelterman
Publisher: Cambridge University Press
ISBN: 1108786545
Category : Medical
Languages : en
Pages : 296
Book Description
This textbook for students in the health and social sciences covers the basics of linear model methods with a minimum of mathematics, assuming only a pre-calculus background. Numerous examples drawn from the news and current events with an emphasis on health issues, illustrate the concepts in an immediately accessible way. Methods covered include linear regression models, Poisson regression, logistic regression, proportional hazards regression, survival analysis, and nonparametric regression. The author emphasizes interpretation of computer output in terms of the motivating example. All of the R code is provided and carefully explained, allowing readers to quickly apply the methods to their own data. Plenty of exercises help students think about the issues involved in the analysis and its interpretation. Code and datasets are available for download from the book's website at www.cambridge.org/zelterman
Publisher: Cambridge University Press
ISBN: 1108786545
Category : Medical
Languages : en
Pages : 296
Book Description
This textbook for students in the health and social sciences covers the basics of linear model methods with a minimum of mathematics, assuming only a pre-calculus background. Numerous examples drawn from the news and current events with an emphasis on health issues, illustrate the concepts in an immediately accessible way. Methods covered include linear regression models, Poisson regression, logistic regression, proportional hazards regression, survival analysis, and nonparametric regression. The author emphasizes interpretation of computer output in terms of the motivating example. All of the R code is provided and carefully explained, allowing readers to quickly apply the methods to their own data. Plenty of exercises help students think about the issues involved in the analysis and its interpretation. Code and datasets are available for download from the book's website at www.cambridge.org/zelterman
Advanced Regression Models with SAS and R
Author: Olga Korosteleva
Publisher: CRC Press
ISBN: 1351690086
Category : Mathematics
Languages : en
Pages : 325
Book Description
Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Publisher: CRC Press
ISBN: 1351690086
Category : Mathematics
Languages : en
Pages : 325
Book Description
Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Building Regression Models with SAS
Author: Robert N. Rodriguez
Publisher: SAS Institute
ISBN: 1951684001
Category : Computers
Languages : en
Pages : 464
Book Description
Advance your skills in building predictive models with SAS! Building Regression Models with SAS: A Guide for Data Scientists teaches data scientists, statisticians, and other analysts who use SAS to train regression models for prediction with large, complex data. Each chapter focuses on a particular model and includes a high-level overview, followed by basic concepts, essential syntax, and examples using new procedures in both SAS/STAT and SAS Viya. By emphasizing introductory examples and interpretation of output, this book provides readers with a clear understanding of how to build the following types of models: general linear models quantile regression models logistic regression models generalized linear models generalized additive models proportional hazards regression models tree models models based on multivariate adaptive regression splines Building Regression Models with SAS is an essential guide to learning about a variety of models that provide interpretability as well as predictive performance.
Publisher: SAS Institute
ISBN: 1951684001
Category : Computers
Languages : en
Pages : 464
Book Description
Advance your skills in building predictive models with SAS! Building Regression Models with SAS: A Guide for Data Scientists teaches data scientists, statisticians, and other analysts who use SAS to train regression models for prediction with large, complex data. Each chapter focuses on a particular model and includes a high-level overview, followed by basic concepts, essential syntax, and examples using new procedures in both SAS/STAT and SAS Viya. By emphasizing introductory examples and interpretation of output, this book provides readers with a clear understanding of how to build the following types of models: general linear models quantile regression models logistic regression models generalized linear models generalized additive models proportional hazards regression models tree models models based on multivariate adaptive regression splines Building Regression Models with SAS is an essential guide to learning about a variety of models that provide interpretability as well as predictive performance.
Exploring Modern Regression Methods Using SAS
Author:
Publisher:
ISBN: 9781642954876
Category :
Languages : en
Pages : 142
Book Description
This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.
Publisher:
ISBN: 9781642954876
Category :
Languages : en
Pages : 142
Book Description
This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.
Building Better Models with JMP Pro
Author: Jim Grayson
Publisher: SAS Institute
ISBN: 1629599565
Category : Computers
Languages : en
Pages : 375
Book Description
Building Better Models with JMP® Pro provides an example-based introduction to business analytics, with a proven process that guides you in the application of modeling tools and concepts. It gives you the "what, why, and how" of using JMP® Pro for building and applying analytic models. This book is designed for business analysts, managers, and practitioners who may not have a solid statistical background, but need to be able to readily apply analytic methods to solve business problems. In addition, this book will greatly benefit faculty members who teach any of the following subjects at the lower to upper graduate level: predictive modeling, data mining, and business analytics. Novice to advanced users in business statistics, business analytics, and predictive modeling will find that it provides a peek inside the black box of algorithms and the methods used. Topics include: regression, logistic regression, classification and regression trees, neural networks, model cross-validation, model comparison and selection, and data reduction techniques. Full of rich examples, Building Better Models with JMP Pro is an applied book on business analytics and modeling that introduces a simple methodology for managing and executing analytics projects. No prior experience with JMP is needed. Make more informed decisions from your data using this newest JMP book.
Publisher: SAS Institute
ISBN: 1629599565
Category : Computers
Languages : en
Pages : 375
Book Description
Building Better Models with JMP® Pro provides an example-based introduction to business analytics, with a proven process that guides you in the application of modeling tools and concepts. It gives you the "what, why, and how" of using JMP® Pro for building and applying analytic models. This book is designed for business analysts, managers, and practitioners who may not have a solid statistical background, but need to be able to readily apply analytic methods to solve business problems. In addition, this book will greatly benefit faculty members who teach any of the following subjects at the lower to upper graduate level: predictive modeling, data mining, and business analytics. Novice to advanced users in business statistics, business analytics, and predictive modeling will find that it provides a peek inside the black box of algorithms and the methods used. Topics include: regression, logistic regression, classification and regression trees, neural networks, model cross-validation, model comparison and selection, and data reduction techniques. Full of rich examples, Building Better Models with JMP Pro is an applied book on business analytics and modeling that introduces a simple methodology for managing and executing analytics projects. No prior experience with JMP is needed. Make more informed decisions from your data using this newest JMP book.
Predictive Modeling with SAS Enterprise Miner
Author: Kattamuri S. Sarma
Publisher: SAS Institute
ISBN: 163526040X
Category : Computers
Languages : en
Pages : 574
Book Description
« Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. »--
Publisher: SAS Institute
ISBN: 163526040X
Category : Computers
Languages : en
Pages : 574
Book Description
« Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. »--
Fundamentals of Predictive Analytics with JMP, Second Edition
Author: Ron Klimberg
Publisher: SAS Institute
ISBN: 1629608033
Category : Computers
Languages : en
Pages : 406
Book Description
Going beyond the theoretical foundation, this step-by-step book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. --
Publisher: SAS Institute
ISBN: 1629608033
Category : Computers
Languages : en
Pages : 406
Book Description
Going beyond the theoretical foundation, this step-by-step book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. --
SAS System for Regression
Author: Rudolf Freund
Publisher: John Wiley & Sons
ISBN: 0471416649
Category : Mathematics
Languages : en
Pages : 258
Book Description
SAS® System for Regression Learn to perform a wide variety of regression analyses using SAS® software with this example-driven revised favorite from SAS Publishing. With this Third Edition you will learn the basics of performing regression analyses using a wide variety of models including nonlinear models. Other topics covered include performing linear regression analyses using PROC REG diagnosing and providing remedies for data problems, including outliers and multicollinearity. Examples feature numerous SAS procedures including REG, PLOT, GPLOT, NLIN, RSREG, AUTOREG, PRINCOMP, and others. A helpful discussion of theory is supplied where necessary. Some knowledge of both regression and the SAS System are assumed. New for this edition The Third Edition includes revisions, updated material, and new material. You’ll find new information on using SAS/INSIGHT® software regression with a binary response with emphasis on PROC LOGISTIC nonparametric regression (smoothing) using moving averages and PROC LOESS. Additionally, updated material throughout the book includes high-resolution PROC REG graphics output, using the OUTEST option to produce a data set, and using PROC SCORE to predict another data set.
Publisher: John Wiley & Sons
ISBN: 0471416649
Category : Mathematics
Languages : en
Pages : 258
Book Description
SAS® System for Regression Learn to perform a wide variety of regression analyses using SAS® software with this example-driven revised favorite from SAS Publishing. With this Third Edition you will learn the basics of performing regression analyses using a wide variety of models including nonlinear models. Other topics covered include performing linear regression analyses using PROC REG diagnosing and providing remedies for data problems, including outliers and multicollinearity. Examples feature numerous SAS procedures including REG, PLOT, GPLOT, NLIN, RSREG, AUTOREG, PRINCOMP, and others. A helpful discussion of theory is supplied where necessary. Some knowledge of both regression and the SAS System are assumed. New for this edition The Third Edition includes revisions, updated material, and new material. You’ll find new information on using SAS/INSIGHT® software regression with a binary response with emphasis on PROC LOGISTIC nonparametric regression (smoothing) using moving averages and PROC LOESS. Additionally, updated material throughout the book includes high-resolution PROC REG graphics output, using the OUTEST option to produce a data set, and using PROC SCORE to predict another data set.
Regression Analysis by Example
Author: Samprit Chatterjee
Publisher: John Wiley & Sons
ISBN: 1119122732
Category : Mathematics
Languages : en
Pages : 421
Book Description
Praise for the Fourth Edition: "This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable." —Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression Fitting nonlinear models Errors in variables ANOVA for designed experiments Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique. Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. Regression Analysis by Example, Fifth Edition is suitable for anyone with an understanding of elementary statistics.
Publisher: John Wiley & Sons
ISBN: 1119122732
Category : Mathematics
Languages : en
Pages : 421
Book Description
Praise for the Fourth Edition: "This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable." —Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression Fitting nonlinear models Errors in variables ANOVA for designed experiments Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique. Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. Regression Analysis by Example, Fifth Edition is suitable for anyone with an understanding of elementary statistics.
Regression and ANOVA
Author: Keith E. Muller
Publisher: SAS Press
ISBN: 9781580258906
Category : Analysis of variance
Languages : en
Pages : 0
Book Description
Muller and Fetterman (U. of N. Carolina, Chapel Hill) developed this text for use in "Intermediate Linear Models," a graduate level biostatistics class at UNC, covering basic theory, multiple regression, model building and evaluation, ANOVA, and universal tools. The text uses sets of real data, and contains almost no proofs. Ideal prerequisites for use include a matrix algebra class, an undergraduate introduction to mathematical statistics, basic programming skills in the statistical package used in the course (data input, data transformation, and analysis), and basic skills in linear models. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).
Publisher: SAS Press
ISBN: 9781580258906
Category : Analysis of variance
Languages : en
Pages : 0
Book Description
Muller and Fetterman (U. of N. Carolina, Chapel Hill) developed this text for use in "Intermediate Linear Models," a graduate level biostatistics class at UNC, covering basic theory, multiple regression, model building and evaluation, ANOVA, and universal tools. The text uses sets of real data, and contains almost no proofs. Ideal prerequisites for use include a matrix algebra class, an undergraduate introduction to mathematical statistics, basic programming skills in the statistical package used in the course (data input, data transformation, and analysis), and basic skills in linear models. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).