Colloidal Quantum Dot Optoelectronics and Photovoltaics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Colloidal Quantum Dot Optoelectronics and Photovoltaics PDF full book. Access full book title Colloidal Quantum Dot Optoelectronics and Photovoltaics by Gerasimos Konstantatos. Download full books in PDF and EPUB format.

Colloidal Quantum Dot Optoelectronics and Photovoltaics

Colloidal Quantum Dot Optoelectronics and Photovoltaics PDF Author: Gerasimos Konstantatos
Publisher: Cambridge University Press
ISBN: 0521198267
Category : Science
Languages : en
Pages : 329

Book Description
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Colloidal Quantum Dot Optoelectronics and Photovoltaics

Colloidal Quantum Dot Optoelectronics and Photovoltaics PDF Author: Gerasimos Konstantatos
Publisher: Cambridge University Press
ISBN: 0521198267
Category : Science
Languages : en
Pages : 329

Book Description
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Solution Processing of Inorganic Materials

Solution Processing of Inorganic Materials PDF Author: David Mitzi
Publisher: John Wiley & Sons
ISBN: 0470407611
Category : Science
Languages : en
Pages : 522

Book Description
Discover the materials set to revolutionize the electronics industry The search for electronic materials that can be cheaply solution-processed into films, while simultaneously providing quality device characteristics, represents a major challenge for materials scientists. Continuous semiconducting thin films with large carrier mobilities are particularly desirable for high-speed microelectronic applications, potentially providing new opportunities for the development of low-cost, large-area, flexible computing devices, displays, sensors, and solar cells. To date, the majority of solution-processing research has focused on molecular and polymeric organic films. In contrast, this book reviews recent achievements in the search for solution-processed inorganic semiconductors and other critical electronic components. These components offer the potential for better performance and more robust thermal and mechanical stability than comparable organic-based systems. Solution Processing of Inorganic Materials covers everything from the more traditional fields of sol-gel processing and chemical bath deposition to the cutting-edge use of nanomaterials in thin-film deposition. In particular, the book focuses on materials and techniques that are compatible with high-throughput, low-cost, and low-temperature deposition processes such as spin coating, dip coating, printing, and stamping. Throughout the text, illustrations and examples of applications are provided to help the reader fully appreciate the concepts and opportunities involved in this exciting field. In addition to presenting the state-of-the-art research, the book offers extensive background material. As a result, any researcher involved or interested in electronic device fabrication can turn to this book to become fully versed in the solution-processed inorganic materials that are set to revolutionize the electronics industry.

Perovskite Photovoltaics

Perovskite Photovoltaics PDF Author: Aparna Thankappan
Publisher: Academic Press
ISBN: 0128129166
Category : Technology & Engineering
Languages : en
Pages : 521

Book Description
Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells

Recent Advances in Thin Film Photovoltaics

Recent Advances in Thin Film Photovoltaics PDF Author: Udai P. Singh
Publisher: Springer Nature
ISBN: 9811937249
Category : Technology & Engineering
Languages : en
Pages : 281

Book Description
This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Photonics, Volume 2

Photonics, Volume 2 PDF Author: David L. Andrews
Publisher: John Wiley & Sons
ISBN: 1119011744
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Organic and Hybrid Solar Cells

Organic and Hybrid Solar Cells PDF Author: Hui Huang
Publisher: Springer
ISBN: 3319108557
Category : Technology & Engineering
Languages : en
Pages : 342

Book Description
This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

Solution Processing for Copper Indium Sulfide Solar Cells

Solution Processing for Copper Indium Sulfide Solar Cells PDF Author: Stephen Thacker Connor
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 99

Book Description
In recent years, the field of photovoltaics has become increasingly important due to rising energy demand and climate change. While most solar cells are currently composed of crystalline silicon, devices with thinner films of inorganic absorber materials might allow production at a greater scale due to their lower materials cost. In particular, thin films of CuInS2 are promising solar absorber materials due to their high efficiencies and low required thicknesses. However, the fabrication of thin film solar cells currently requires expensive vacuum techniques. As an alternative, solution-based deposition techniques have been proposed as a route to low-cost and high-throughput electronic device fabrication. I have studied how film growth depends on solutuion deposited precursor film quality, with the goal of producing large grained films of CuInS2 through solution processing. In the first approach, we used solvothermal decomposition of organometallic precursors at moderate temperatures to produce nanoparticles of CuInS2. Thin films of these nanoparticles were cast onto molybdenum coated glass and further processed to create CuInS2 solar cells. We found that performance was dependent on film porosity, grain size, and stoichiometry of the nanoparticles. Films with grain sizes of ~200nm were attained, from which 1.3% efficient solar cells were made. In addition, we showed that this synthesis could be extended to produce CuInS2 nanoparticles with partial substitution of Fe, Zn, and Ga. In the second approach, we synthesized an air-stable hybrid organometallic/nanoparticle ink at room temperature in ambient conditions through a vulcanization reaction. This ink could be coated onto substrates in smooth layers, and further reactive annealing formed large grained CuInS2 films. This process was characterized, and a correlation between residual carbon and grain growth was found. Additionally, the chemical transformation between precursor layers and final sulfide thin film was analyzed, with an emphasis on the difference between sulfurization and selenization. We demonstrated that the sulfurization process was producing morphological defects due to its nucleation limited growth mechanism. However, it was modified to more closely resemble the diffusion limited selenization mechanism, thus producing flat films of CuInS2 with grain sizes of ~500nm.

Nanoenergy

Nanoenergy PDF Author: Flavio L Souza
Publisher: Springer
ISBN: 3319628003
Category : Technology & Engineering
Languages : en
Pages : 338

Book Description
This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.

Polymer Photovoltaics

Polymer Photovoltaics PDF Author: Fei Huang
Publisher: Royal Society of Chemistry
ISBN: 1849739870
Category : Science
Languages : en
Pages : 422

Book Description
An international perspective on the latest research in polymer solar cell technology.

Physics of Solar Cells

Physics of Solar Cells PDF Author: Peter Würfel
Publisher: John Wiley & Sons
ISBN: 352741309X
Category : Science
Languages : en
Pages : 288

Book Description
The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.