Author: Hermann Schlichting (Deceased)
Publisher: Springer
ISBN: 366252919X
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Boundary-Layer Theory
Author: Hermann Schlichting (Deceased)
Publisher: Springer
ISBN: 366252919X
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Publisher: Springer
ISBN: 366252919X
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Origin of Turbulence
Author: Hua-Shu Dou
Publisher: Springer
ISBN: 9789811900891
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book presents the new discovery of the origin of turbulence from Navier–Stokes equations. The fully developed turbulence is found to be composed of singularities of flow field. The mechanisms of flow stability and turbulent transition are described using the energy gradient theory, which states all the flow instability and breakdown resulted from the gradient of the total mechanical energy normal to the flow direction. This approach is universal for flow instability in Newtonian flow and non-Newtonian flow. The theory has been used to solve several problems, such as plane and pipe Poiseuille flows, plane Couette flow, Taylor–Couette flow, flows in straight coaxial annulus, flows in curved pipes and ducts, thermal convection flow, viscoelastic flow, and magnet fluid flow, etc. The theory is in agreement with results from numerical simulations and experiments. The analytical method used in this book is novel and is different from the traditional approaches. This book includes the fundamental basics of flow stability and turbulent transition, the essentials of the energy gradient theory, and the applications of the theory to several practical problems. This book is suitable for researchers and graduate students.
Publisher: Springer
ISBN: 9789811900891
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book presents the new discovery of the origin of turbulence from Navier–Stokes equations. The fully developed turbulence is found to be composed of singularities of flow field. The mechanisms of flow stability and turbulent transition are described using the energy gradient theory, which states all the flow instability and breakdown resulted from the gradient of the total mechanical energy normal to the flow direction. This approach is universal for flow instability in Newtonian flow and non-Newtonian flow. The theory has been used to solve several problems, such as plane and pipe Poiseuille flows, plane Couette flow, Taylor–Couette flow, flows in straight coaxial annulus, flows in curved pipes and ducts, thermal convection flow, viscoelastic flow, and magnet fluid flow, etc. The theory is in agreement with results from numerical simulations and experiments. The analytical method used in this book is novel and is different from the traditional approaches. This book includes the fundamental basics of flow stability and turbulent transition, the essentials of the energy gradient theory, and the applications of the theory to several practical problems. This book is suitable for researchers and graduate students.
Turbulence In Coastal And Civil Engineering
Author: B Mutlu Sumer
Publisher: World Scientific
ISBN: 9813234326
Category : Technology & Engineering
Languages : en
Pages : 758
Book Description
This book discusses the subject of turbulence encountered in coastal and civil engineering.The primary aim of the book is to describe turbulence processes including transition to turbulence; mean and fluctuating flows in channels/pipes, and in currents; wave boundary layers (including boundary layers under solitary waves); streaming processes in wave boundary layers; turbulence processes in breaking waves including breaking solitary waves; turbulence processes such as bursting process and their implications for sediment transport; flow resistance in steady and wave boundary layers; and turbulent diffusion and dispersion processes in the coastal and river environment, including sediment transport due to diffusion/dispersion.Both phenomenological and statistical theories are described in great detail. Turbulence modelling is also described, and several examples for modelling of turbulence in steady flow and wave boundary layers are presented.The book ends with a chapter containing hands-on exercises on a wide variety of turbulent flows including experimental study of turbulence in an open-channel flow, using Laser Doppler Anemometry; Statistical, correlation and spectral analysis of turbulent air jet flow; Turbulence modelling of wave boundary layer flows; and numerical modelling of dispersion in a turbulent boundary layer, a set of exercises used by the authors in their Masters classes over many years.Although the book is essentially intended for professionals and researchers in the area of Coastal and Civil Engineering, and as a text book for graduate/post graduate students, the contents of the book will, however, additionally provide sufficient background in the study of turbulent flows relevant to many other disciplines, such as Wind Engineering, Mechanical Engineering, and Environmental Engineering.
Publisher: World Scientific
ISBN: 9813234326
Category : Technology & Engineering
Languages : en
Pages : 758
Book Description
This book discusses the subject of turbulence encountered in coastal and civil engineering.The primary aim of the book is to describe turbulence processes including transition to turbulence; mean and fluctuating flows in channels/pipes, and in currents; wave boundary layers (including boundary layers under solitary waves); streaming processes in wave boundary layers; turbulence processes in breaking waves including breaking solitary waves; turbulence processes such as bursting process and their implications for sediment transport; flow resistance in steady and wave boundary layers; and turbulent diffusion and dispersion processes in the coastal and river environment, including sediment transport due to diffusion/dispersion.Both phenomenological and statistical theories are described in great detail. Turbulence modelling is also described, and several examples for modelling of turbulence in steady flow and wave boundary layers are presented.The book ends with a chapter containing hands-on exercises on a wide variety of turbulent flows including experimental study of turbulence in an open-channel flow, using Laser Doppler Anemometry; Statistical, correlation and spectral analysis of turbulent air jet flow; Turbulence modelling of wave boundary layer flows; and numerical modelling of dispersion in a turbulent boundary layer, a set of exercises used by the authors in their Masters classes over many years.Although the book is essentially intended for professionals and researchers in the area of Coastal and Civil Engineering, and as a text book for graduate/post graduate students, the contents of the book will, however, additionally provide sufficient background in the study of turbulent flows relevant to many other disciplines, such as Wind Engineering, Mechanical Engineering, and Environmental Engineering.
Viscous Drag Reduction in Boundary Layers
Author:
Publisher: AIAA
ISBN: 9781600863783
Category : Boundary layer
Languages : en
Pages : 542
Book Description
Publisher: AIAA
ISBN: 9781600863783
Category : Boundary layer
Languages : en
Pages : 542
Book Description
Recent Developments in Turbulence Management
Author: Kwing-So Choi
Publisher: Springer Science & Business Media
ISBN: 9780792314776
Category : Science
Languages : en
Pages : 368
Book Description
Including papers on riblets, this book covers their practical applications to aircraft and to a model ship, near-wall coherent structure of boundary layer and effects of flow three-dimensionality. This volume also includes LEBUs (Large Eddy Break-Up devices), surface roughness, compliant surfaces and polymer additives, and more.
Publisher: Springer Science & Business Media
ISBN: 9780792314776
Category : Science
Languages : en
Pages : 368
Book Description
Including papers on riblets, this book covers their practical applications to aircraft and to a model ship, near-wall coherent structure of boundary layer and effects of flow three-dimensionality. This volume also includes LEBUs (Large Eddy Break-Up devices), surface roughness, compliant surfaces and polymer additives, and more.
Stability and Transition in Shear Flows
Author: Peter J. Schmid
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561
Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561
Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Fluid Mechanics for Engineers
Author: Meinhard T. Schobeiri
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Boundary-layer Stability Diagrams for Electrically Conducting Fluids in the Presence of a Magnetic Field
Author: Vernon J. Rossow
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 28
Book Description
Neutral stability curves pertaining to a two-dimensional infinitesimal sinusoidal disturbance are presented for the laminar flow of an incompressible, electrically conducting fluid over a semi-infinite flat plate in the presence of either a coplanar or transverse magnetic field. The magnetic field is found to be stabilizing in all of the cases studied except one.
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 28
Book Description
Neutral stability curves pertaining to a two-dimensional infinitesimal sinusoidal disturbance are presented for the laminar flow of an incompressible, electrically conducting fluid over a semi-infinite flat plate in the presence of either a coplanar or transverse magnetic field. The magnetic field is found to be stabilizing in all of the cases studied except one.
Boundary Layer Flows
Author: Vallampati Ramachandra Prasad
Publisher: BoD – Books on Demand
ISBN: 1839681853
Category : Mathematics
Languages : en
Pages : 236
Book Description
Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory's importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.
Publisher: BoD – Books on Demand
ISBN: 1839681853
Category : Mathematics
Languages : en
Pages : 236
Book Description
Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory's importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.
Physics of Transitional Shear Flows
Author: Andrey V. Boiko
Publisher: Springer Science & Business Media
ISBN: 9400724985
Category : Science
Languages : en
Pages : 286
Book Description
Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at late stages of transition. These include secondary instabilities and nonlinear features of boundary-layer perturbations that lead to the final breakdown to turbulence. Thus, the reader is provided with a step-by-step approach that covers the milestones and recent advances in the laminar-turbulent transition. Special aspects of instability and transition are discussed through the book and are intended for research scientists, while the main target of the book is the student in the fundamentals of fluid mechanics. Computational guides, recommended exercises, and PowerPoint multimedia notes based on results of real scientific experiments supplement the monograph. These are especially helpful for the neophyte to obtain a solid foundation in hydrodynamic stability. To access the supplementary material go to extras.springer.com and type in the ISBN for this volume.
Publisher: Springer Science & Business Media
ISBN: 9400724985
Category : Science
Languages : en
Pages : 286
Book Description
Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at late stages of transition. These include secondary instabilities and nonlinear features of boundary-layer perturbations that lead to the final breakdown to turbulence. Thus, the reader is provided with a step-by-step approach that covers the milestones and recent advances in the laminar-turbulent transition. Special aspects of instability and transition are discussed through the book and are intended for research scientists, while the main target of the book is the student in the fundamentals of fluid mechanics. Computational guides, recommended exercises, and PowerPoint multimedia notes based on results of real scientific experiments supplement the monograph. These are especially helpful for the neophyte to obtain a solid foundation in hydrodynamic stability. To access the supplementary material go to extras.springer.com and type in the ISBN for this volume.