Author: Alexander O. Gogolin
Publisher: Cambridge University Press
ISBN: 0521617197
Category : Science
Languages : en
Pages : 452
Book Description
Detailed account of important technique for researchers and graduate students working in condensed matter and theoretical physics.
Bosonization and Strongly Correlated Systems
Author: Alexander O. Gogolin
Publisher: Cambridge University Press
ISBN: 0521617197
Category : Science
Languages : en
Pages : 452
Book Description
Detailed account of important technique for researchers and graduate students working in condensed matter and theoretical physics.
Publisher: Cambridge University Press
ISBN: 0521617197
Category : Science
Languages : en
Pages : 452
Book Description
Detailed account of important technique for researchers and graduate students working in condensed matter and theoretical physics.
Theoretical Methods for Strongly Correlated Electrons
Author: David Sénéchal
Publisher: Springer Science & Business Media
ISBN: 0387217177
Category : Science
Languages : en
Pages : 370
Book Description
Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.
Publisher: Springer Science & Business Media
ISBN: 0387217177
Category : Science
Languages : en
Pages : 370
Book Description
Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.
Self-consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems
Author: Rudolf Haussmann
Publisher: Springer Science & Business Media
ISBN: 3540489363
Category : Science
Languages : en
Pages : 181
Book Description
This research monograph offers an introduction to advanced quantum field theoretical techniques for many-particle systems beyond perturbation theory. Several schemes for resummation of the Feynman diagrams are described. The resulting approximations are especially well suited for strongly correlated fermion and boson systems. Also considered is the crossover from BCS superconductivity to Bose--Einstein condensation in fermion systems with strong attractive interaction. In particular, a field theoretic formulation of "bosonization" is presented; it is published here for the first time. This method is applied to the fractional quantum Hall effect, to the Coulomb plasma, and to several exactly solvable models.
Publisher: Springer Science & Business Media
ISBN: 3540489363
Category : Science
Languages : en
Pages : 181
Book Description
This research monograph offers an introduction to advanced quantum field theoretical techniques for many-particle systems beyond perturbation theory. Several schemes for resummation of the Feynman diagrams are described. The resulting approximations are especially well suited for strongly correlated fermion and boson systems. Also considered is the crossover from BCS superconductivity to Bose--Einstein condensation in fermion systems with strong attractive interaction. In particular, a field theoretic formulation of "bosonization" is presented; it is published here for the first time. This method is applied to the fractional quantum Hall effect, to the Coulomb plasma, and to several exactly solvable models.
Quantum Field Theory in Condensed Matter Physics
Author: Alexei M. Tsvelik
Publisher: Cambridge University Press
ISBN: 1139440500
Category : Science
Languages : en
Pages : 361
Book Description
This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1139440500
Category : Science
Languages : en
Pages : 361
Book Description
This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.
New Theoretical Approaches to Strongly Correlated Systems
Author: Alexei M. Tsvelik
Publisher: Springer Science & Business Media
ISBN: 9401008388
Category : Science
Languages : en
Pages : 308
Book Description
For many years, the physics of strongly correlated systems was considered a theorists' playground, right at the border with pure mathematics, where physicists from the `real world' did not venture. The time has come, however, when healthy physics cannot exist without these techniques and results. Lectures on selected topics in the theory of strongly correlated systems are here presented by the leading experts in the field. Topics covered include a use of the form factor approach in low-dimensional systems, applications of quantum field theory to disorder, and dynamical mean field theory. The main divisions of the book deal with: I) Quantum Critical Points; (II) Strongly Correlated One-Dimensional Systems; (III) Strong Correlations and Disorder; and (IV) Dynamical Mean Field Theory.
Publisher: Springer Science & Business Media
ISBN: 9401008388
Category : Science
Languages : en
Pages : 308
Book Description
For many years, the physics of strongly correlated systems was considered a theorists' playground, right at the border with pure mathematics, where physicists from the `real world' did not venture. The time has come, however, when healthy physics cannot exist without these techniques and results. Lectures on selected topics in the theory of strongly correlated systems are here presented by the leading experts in the field. Topics covered include a use of the form factor approach in low-dimensional systems, applications of quantum field theory to disorder, and dynamical mean field theory. The main divisions of the book deal with: I) Quantum Critical Points; (II) Strongly Correlated One-Dimensional Systems; (III) Strong Correlations and Disorder; and (IV) Dynamical Mean Field Theory.
Correlations in Low-Dimensional Quantum Gases
Author: Guillaume Lang
Publisher: Springer
ISBN: 3030052850
Category : Science
Languages : en
Pages : 204
Book Description
The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.
Publisher: Springer
ISBN: 3030052850
Category : Science
Languages : en
Pages : 204
Book Description
The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.
Finite Size Effects in Correlated Electron Models
Author: Andrei A. Zvyagin
Publisher: World Scientific
ISBN: 1860945031
Category : Science
Languages : en
Pages : 380
Book Description
The book presents exact results for one-dimensional models (including quantum spin models) of strongly correlated electrons in a comprehensive and concise manner. It incorporates important results related to magnetic and hybridization impurities in electron hosts and contains exact original results for disordered ensembles of impurities in interacting systems. These models describe a number of real low-dimensional electron systems that are widely used in nanophysics and microelectronics.An important method of modern theoretical and mathematical physics — the Bethe's Ansatz (BA) — is introduced to readers. This book presents different forms of the BA for periodic and open quantum chains. Other forms dealt with are the co-ordinate BA, thermodynamic BA, nested BA, algebraic BA, and thermal BA. The book also contains a compact description of other theoretical methods such as scaling, conformal field theory, Abelian and non-Abelian bosonizations.The book is suitable for use as a textbook by graduate students in non-perturbative methods of low-dimensional quantum many-body theory. It will also be a useful source of reference for qualified physicists, as well as non-experts in low-dimensional physics, as it explores material necessary for further studies in the fields of exactly solvable quantum models and low-dimensional correlated electron systems.
Publisher: World Scientific
ISBN: 1860945031
Category : Science
Languages : en
Pages : 380
Book Description
The book presents exact results for one-dimensional models (including quantum spin models) of strongly correlated electrons in a comprehensive and concise manner. It incorporates important results related to magnetic and hybridization impurities in electron hosts and contains exact original results for disordered ensembles of impurities in interacting systems. These models describe a number of real low-dimensional electron systems that are widely used in nanophysics and microelectronics.An important method of modern theoretical and mathematical physics — the Bethe's Ansatz (BA) — is introduced to readers. This book presents different forms of the BA for periodic and open quantum chains. Other forms dealt with are the co-ordinate BA, thermodynamic BA, nested BA, algebraic BA, and thermal BA. The book also contains a compact description of other theoretical methods such as scaling, conformal field theory, Abelian and non-Abelian bosonizations.The book is suitable for use as a textbook by graduate students in non-perturbative methods of low-dimensional quantum many-body theory. It will also be a useful source of reference for qualified physicists, as well as non-experts in low-dimensional physics, as it explores material necessary for further studies in the fields of exactly solvable quantum models and low-dimensional correlated electron systems.
Quantum Field Theory in Strongly Correlated Electronic Systems
Author: Naoto Nagaosa
Publisher: Springer Science & Business Media
ISBN: 9783540659815
Category : Science
Languages : en
Pages : 188
Book Description
In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.
Publisher: Springer Science & Business Media
ISBN: 9783540659815
Category : Science
Languages : en
Pages : 188
Book Description
In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.
The Physics of Superconductors
Author: Karl-Heinz Bennemann
Publisher: Springer Science & Business Media
ISBN: 3642189148
Category : Technology & Engineering
Languages : en
Pages : 1149
Book Description
This is the second volume of a comprehensive two-volume treatise on superconductivity that represents the first such publication since the earlier widely acclaimed books by R. Parks. It systematically reviews the basic physics and recent advances in the field. Leading researchers describe the state of the art in conventional phonon-induced superconductivity, high-Tc superconductivity, and in novel superconductivity, including triplet pairing in the ruthenates. The second volume is largely concerned with novel superconductors, such as heavy-fermion metals and organic materials, and also includes granular superconductors. Important new results on current problems are presented in a manner designed to stimulate further research. Numerous illustrations, diagrams and tables make this book especially useful as a reference work for students, teachers and researchers. Volume 1 treats Conventional and High-Tc Superconductors (3-540-43883-1).
Publisher: Springer Science & Business Media
ISBN: 3642189148
Category : Technology & Engineering
Languages : en
Pages : 1149
Book Description
This is the second volume of a comprehensive two-volume treatise on superconductivity that represents the first such publication since the earlier widely acclaimed books by R. Parks. It systematically reviews the basic physics and recent advances in the field. Leading researchers describe the state of the art in conventional phonon-induced superconductivity, high-Tc superconductivity, and in novel superconductivity, including triplet pairing in the ruthenates. The second volume is largely concerned with novel superconductors, such as heavy-fermion metals and organic materials, and also includes granular superconductors. Important new results on current problems are presented in a manner designed to stimulate further research. Numerous illustrations, diagrams and tables make this book especially useful as a reference work for students, teachers and researchers. Volume 1 treats Conventional and High-Tc Superconductors (3-540-43883-1).
A Course in Quantum Many-Body Theory
Author: Michele Fabrizio
Publisher: Springer Nature
ISBN: 3031163052
Category : Science
Languages : en
Pages : 350
Book Description
This textbook presents various methods to deal with quantum many-body systems, mainly addressing interacting electrons. It focusses on basic tools to tackle quantum effects in macroscopic systems of interacting particles, and on fundamental concepts to interpret the behavior of such systems as revealed by experiments. The textbook starts from simple concepts like second quantization, which allows one to include the indistinguishability and statistics of particles in a rather simple framework, and linear response theory. Then, it gradually moves towards more technical and advanced subjects, including recent developments in the field. The diagrammatic technique is comprehensively discussed. Some of the advanced topics include Landau’s Fermi liquid theory, Luttinger liquids, the Kondo effect, and the Mott transition. The ultimate goal of the book is to gain comprehension of physical quantities that are routinely measured experimentally and fully characterize the system, therefore it is useful for graduate students but also young researchers studying and investigating the theoretical aspects of condensed matter physics.
Publisher: Springer Nature
ISBN: 3031163052
Category : Science
Languages : en
Pages : 350
Book Description
This textbook presents various methods to deal with quantum many-body systems, mainly addressing interacting electrons. It focusses on basic tools to tackle quantum effects in macroscopic systems of interacting particles, and on fundamental concepts to interpret the behavior of such systems as revealed by experiments. The textbook starts from simple concepts like second quantization, which allows one to include the indistinguishability and statistics of particles in a rather simple framework, and linear response theory. Then, it gradually moves towards more technical and advanced subjects, including recent developments in the field. The diagrammatic technique is comprehensively discussed. Some of the advanced topics include Landau’s Fermi liquid theory, Luttinger liquids, the Kondo effect, and the Mott transition. The ultimate goal of the book is to gain comprehension of physical quantities that are routinely measured experimentally and fully characterize the system, therefore it is useful for graduate students but also young researchers studying and investigating the theoretical aspects of condensed matter physics.