Author: Ricardo López-Ruiz
Publisher: BoD – Books on Demand
ISBN: 1839697822
Category : Computers
Languages : en
Pages : 207
Book Description
Nature evolves mainly in a statistical way. Different strategies, formulas, and conformations are continuously confronted in the natural processes. Some of them are selected and then the evolution continues with a new loop of confrontation for the next generation of phenomena and living beings. Failings are corrected without a previous program or design. The new options generated by different statistical and random scenarios lead to solutions for surviving the present conditions. This is the general panorama for all scrutiny levels of the life cycles. Over three sections, this book examines different statistical questions and techniques in the context of machine learning and clustering methods, the frailty models used in survival analysis, and other studies of statistics applied to diverse problems.
Computational Statistics and Applications
Author: Ricardo López-Ruiz
Publisher: BoD – Books on Demand
ISBN: 1839697822
Category : Computers
Languages : en
Pages : 207
Book Description
Nature evolves mainly in a statistical way. Different strategies, formulas, and conformations are continuously confronted in the natural processes. Some of them are selected and then the evolution continues with a new loop of confrontation for the next generation of phenomena and living beings. Failings are corrected without a previous program or design. The new options generated by different statistical and random scenarios lead to solutions for surviving the present conditions. This is the general panorama for all scrutiny levels of the life cycles. Over three sections, this book examines different statistical questions and techniques in the context of machine learning and clustering methods, the frailty models used in survival analysis, and other studies of statistics applied to diverse problems.
Publisher: BoD – Books on Demand
ISBN: 1839697822
Category : Computers
Languages : en
Pages : 207
Book Description
Nature evolves mainly in a statistical way. Different strategies, formulas, and conformations are continuously confronted in the natural processes. Some of them are selected and then the evolution continues with a new loop of confrontation for the next generation of phenomena and living beings. Failings are corrected without a previous program or design. The new options generated by different statistical and random scenarios lead to solutions for surviving the present conditions. This is the general panorama for all scrutiny levels of the life cycles. Over three sections, this book examines different statistical questions and techniques in the context of machine learning and clustering methods, the frailty models used in survival analysis, and other studies of statistics applied to diverse problems.
Advanced Data Mining and Applications
Author: Shuigeng Zhou
Publisher: Springer Science & Business Media
ISBN: 3642355277
Category : Computers
Languages : en
Pages : 812
Book Description
This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and applications; classification; prediction, regression and recognition; optimization and approximation; mining time series and streaming data; Web mining and semantic analysis; data mining applications; search and retrieval; information recommendation and hiding; outlier detection; topic modeling; and data cube computing.
Publisher: Springer Science & Business Media
ISBN: 3642355277
Category : Computers
Languages : en
Pages : 812
Book Description
This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and applications; classification; prediction, regression and recognition; optimization and approximation; mining time series and streaming data; Web mining and semantic analysis; data mining applications; search and retrieval; information recommendation and hiding; outlier detection; topic modeling; and data cube computing.
Handbook of Bayesian Variable Selection
Author: Mahlet G. Tadesse
Publisher: CRC Press
ISBN: 1000510204
Category : Mathematics
Languages : en
Pages : 491
Book Description
Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material
Publisher: CRC Press
ISBN: 1000510204
Category : Mathematics
Languages : en
Pages : 491
Book Description
Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material
Machine Learning Under a Modern Optimization Lens
Author: Dimitris Bertsimas
Publisher:
ISBN: 9781733788502
Category : Machine learning
Languages : en
Pages : 589
Book Description
Publisher:
ISBN: 9781733788502
Category : Machine learning
Languages : en
Pages : 589
Book Description
Statistics for High-Dimensional Data
Author: Peter Bühlmann
Publisher: Springer Science & Business Media
ISBN: 364220192X
Category : Mathematics
Languages : en
Pages : 568
Book Description
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Publisher: Springer Science & Business Media
ISBN: 364220192X
Category : Mathematics
Languages : en
Pages : 568
Book Description
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Statistical Learning with Sparsity
Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354
Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354
Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Cross-validation and Regression Analysis in High-dimensional Sparse Linear Models
Author: Feng Zhang
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 91
Book Description
Modern scientific research often involves experiments with at most hundreds of subjects but with tens of thousands of variables for every subject. The challenge of high dimensionality has reshaped statistical thinking and modeling. Variable selection plays a pivotal role in the high-dimensional data analysis, and the combination of sparsity and accuracy is crucial for statistical theory and practical applications. Regularization methods are attractive for tackling these sparsity and accuracy issues. The first part of this thesis studies two regularization methods. First, we consider the orthogonal greedy algorithm (OGA) used in conjunction with a high-dimensional information criterion introduced by Ing& Lai (2011). Although it has been shown to have excellent performance for weakly sparse regression models, one does not know a priori in practice that the actual model is weakly sparse, and we address this problem by developing a new cross-validation approach. OGA can be viewed as L0 regularization for weakly sparse regression models. When such sparsity fails, as revealed by the cross-validation analysis, we propose to use a new way to combine L1 and L2 penalties, which we show to have important advantages over previous regularization methods. The second part of the thesis develops a Monte Carlo Cross-Validation (MCCV) method to estimate the distribution of out-of-sample prediction errors when a training sample is used to build a regression model for prediction. Asymptotic theory and simulation studies show that the proposed MCCV method mimics the actual (but unknown) prediction error distribution even when the number of regressors exceeds the sample size. Therefore MCCV provides a useful tool for comparing the predictive performance of different regularization methods for real (rather than simulated) data sets.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 91
Book Description
Modern scientific research often involves experiments with at most hundreds of subjects but with tens of thousands of variables for every subject. The challenge of high dimensionality has reshaped statistical thinking and modeling. Variable selection plays a pivotal role in the high-dimensional data analysis, and the combination of sparsity and accuracy is crucial for statistical theory and practical applications. Regularization methods are attractive for tackling these sparsity and accuracy issues. The first part of this thesis studies two regularization methods. First, we consider the orthogonal greedy algorithm (OGA) used in conjunction with a high-dimensional information criterion introduced by Ing& Lai (2011). Although it has been shown to have excellent performance for weakly sparse regression models, one does not know a priori in practice that the actual model is weakly sparse, and we address this problem by developing a new cross-validation approach. OGA can be viewed as L0 regularization for weakly sparse regression models. When such sparsity fails, as revealed by the cross-validation analysis, we propose to use a new way to combine L1 and L2 penalties, which we show to have important advantages over previous regularization methods. The second part of the thesis develops a Monte Carlo Cross-Validation (MCCV) method to estimate the distribution of out-of-sample prediction errors when a training sample is used to build a regression model for prediction. Asymptotic theory and simulation studies show that the proposed MCCV method mimics the actual (but unknown) prediction error distribution even when the number of regressors exceeds the sample size. Therefore MCCV provides a useful tool for comparing the predictive performance of different regularization methods for real (rather than simulated) data sets.
New Frontiers of Biostatistics and Bioinformatics
Author: Yichuan Zhao
Publisher: Springer
ISBN: 3319993895
Category : Mathematics
Languages : en
Pages : 473
Book Description
This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.
Publisher: Springer
ISBN: 3319993895
Category : Mathematics
Languages : en
Pages : 473
Book Description
This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.
Issues in Life Sciences: Molecular Biology: 2011 Edition
Author:
Publisher: ScholarlyEditions
ISBN: 1464963487
Category : Science
Languages : en
Pages : 3332
Book Description
Issues in Life Sciences: Molecular Biology / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Life Sciences—Molecular Biology. The editors have built Issues in Life Sciences: Molecular Biology: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Life Sciences—Molecular Biology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Life Sciences: Molecular Biology: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Publisher: ScholarlyEditions
ISBN: 1464963487
Category : Science
Languages : en
Pages : 3332
Book Description
Issues in Life Sciences: Molecular Biology / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Life Sciences—Molecular Biology. The editors have built Issues in Life Sciences: Molecular Biology: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Life Sciences—Molecular Biology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Life Sciences: Molecular Biology: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Computational Intelligence and Healthcare Informatics
Author: Om Prakash Jena
Publisher: John Wiley & Sons
ISBN: 1119818680
Category : Computers
Languages : en
Pages : 434
Book Description
COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.
Publisher: John Wiley & Sons
ISBN: 1119818680
Category : Computers
Languages : en
Pages : 434
Book Description
COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.