Books IV to VII of Diophantus’ Arithmetica PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Books IV to VII of Diophantus’ Arithmetica PDF full book. Access full book title Books IV to VII of Diophantus’ Arithmetica by Jacques Sesiano. Download full books in PDF and EPUB format.

Books IV to VII of Diophantus’ Arithmetica

Books IV to VII of Diophantus’ Arithmetica PDF Author: Jacques Sesiano
Publisher: Springer Science & Business Media
ISBN: 1461381746
Category : Mathematics
Languages : en
Pages : 507

Book Description
This edition of Books IV to VII of Diophantus' Arithmetica, which are extant only in a recently discovered Arabic translation, is the outgrowth of a doctoral dissertation submitted to the Brown University Department of the History of Mathematics in May 1975. Early in 1973, my thesis adviser, Gerald Toomer, learned of the existence of this manuscript in A. Gulchln-i Macanl's just-published catalogue of the mathematical manuscripts in the Mashhad Shrine Library, and secured a photographic copy of it. In Sep tember 1973, he proposed that the study of it be the subject of my dissertation. Since limitations of time compelled us to decide on priorities, the first objective was to establish a critical text and to translate it. For this reason, the Arabic text and the English translation appear here virtually as they did in my thesis. Major changes, however, are found in the mathematical com mentary and, even more so, in the Arabic index. The discussion of Greek and Arabic interpolations is entirely new, as is the reconstruction of the history of the Arithmetica from Diophantine to Arabic times. It is with the deepest gratitude that I acknowledge my great debt to Gerald Toomer for his constant encouragement and invaluable assistance.

Books IV to VII of Diophantus’ Arithmetica

Books IV to VII of Diophantus’ Arithmetica PDF Author: Jacques Sesiano
Publisher: Springer Science & Business Media
ISBN: 1461381746
Category : Mathematics
Languages : en
Pages : 507

Book Description
This edition of Books IV to VII of Diophantus' Arithmetica, which are extant only in a recently discovered Arabic translation, is the outgrowth of a doctoral dissertation submitted to the Brown University Department of the History of Mathematics in May 1975. Early in 1973, my thesis adviser, Gerald Toomer, learned of the existence of this manuscript in A. Gulchln-i Macanl's just-published catalogue of the mathematical manuscripts in the Mashhad Shrine Library, and secured a photographic copy of it. In Sep tember 1973, he proposed that the study of it be the subject of my dissertation. Since limitations of time compelled us to decide on priorities, the first objective was to establish a critical text and to translate it. For this reason, the Arabic text and the English translation appear here virtually as they did in my thesis. Major changes, however, are found in the mathematical com mentary and, even more so, in the Arabic index. The discussion of Greek and Arabic interpolations is entirely new, as is the reconstruction of the history of the Arithmetica from Diophantine to Arabic times. It is with the deepest gratitude that I acknowledge my great debt to Gerald Toomer for his constant encouragement and invaluable assistance.

An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory PDF Author: Richard Friedberg
Publisher: Courier Corporation
ISBN: 0486152693
Category : Mathematics
Languages : en
Pages : 241

Book Description
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

The Arithmetica of Diophantus

The Arithmetica of Diophantus PDF Author: Jean Christianidis
Publisher: Taylor & Francis
ISBN: 1351694979
Category : History
Languages : en
Pages : 891

Book Description
This volume offers an English translation of all ten extant books of Diophantus of Alexandria’s Arithmetica, along with a comprehensive conceptual, historical, and mathematical commentary. Before his work became the inspiration for the emerging field of number theory in the seventeenth century, Diophantus (ca. 3rd c. CE) was known primarily as an algebraist. This volume explains how his method of solving arithmetical problems agrees both conceptually and procedurally with the premodern algebra later practiced in Arabic, Latin, and European vernaculars, and how this algebra differs radically from the modern algebra initiated by François Viète and René Descartes. It also discusses other surviving traces of ancient Greek algebra and follows the influence of the Arithmetica in medieval Islam, Byzantium, and the European Renaissance down to the 1621 publication of Claude-Gaspard Bachet’s edition. After the English translation the book provides a problem-by-problem commentary explaining the solutions in a manner compatible with Diophantus’s mode of thought. The Arithmetica of Diophantus provides an invaluable resource for historians of mathematics, science, and technology, as well as those studying ancient Greek, medieval Islamic and Byzantine, and Renaissance history. In addition, the volume is also suitable for mathematicians and mathematics educators.

Diophantine Geometry

Diophantine Geometry PDF Author: Marc Hindry
Publisher: Springer Science & Business Media
ISBN: 1461212103
Category : Mathematics
Languages : en
Pages : 574

Book Description
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

Making up Numbers: A History of Invention in Mathematics

Making up Numbers: A History of Invention in Mathematics PDF Author: Ekkehard Kopp
Publisher: Open Book Publishers
ISBN: 1800640978
Category : Mathematics
Languages : en
Pages : 280

Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.

Apollonius: Conics Books V to VII

Apollonius: Conics Books V to VII PDF Author: Gerald J. Toomer
Publisher: Springer Science & Business Media
ISBN: 1461389852
Category : Mathematics
Languages : en
Pages : 978

Book Description
With the publication of this book I discharge a debt which our era has long owed to the memory of a great mathematician of antiquity: to pub lish the /llost books" of the Conics of Apollonius in the form which is the closest we have to the original, the Arabic version of the Banu Musil. Un til now this has been accessible only in Halley's Latin translation of 1710 (and translations into other languages entirely dependent on that). While I yield to none in my admiration for Halley's edition of the Conics, it is far from satisfying the requirements of modern scholarship. In particular, it does not contain the Arabic text. I hope that the present edition will not only remedy those deficiencies, but will also serve as a foundation for the study of the influence of the Conics in the medieval Islamic world. I acknowledge with gratitude the help of a number of institutions and people. The John Simon Guggenheim Memorial Foundation, by the award of one of its Fellowships for 1985-86, enabled me to devote an unbroken year to this project, and to consult essential material in the Bodleian Li brary, Oxford, and the Bibliotheque Nationale, Paris. Corpus Christi Col lege, Cambridge, appointed me to a Visiting Fellowship in Trinity Term, 1988, which allowed me to make good use of the rich resources of both the University Library, Cambridge, and the Bodleian Library.

Diophantus of Alexandria

Diophantus of Alexandria PDF Author: Thomas L. Heath
Publisher: CUP Archive
ISBN:
Category : Algebra
Languages : en
Pages : 406

Book Description


Number Theory and Geometry: An Introduction to Arithmetic Geometry

Number Theory and Geometry: An Introduction to Arithmetic Geometry PDF Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506

Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Great Moments in Mathematics (before 1650)

Great Moments in Mathematics (before 1650) PDF Author: Howard Whitley Eves
Publisher: MAA
ISBN: 9780883853108
Category : History
Languages : en
Pages : 292

Book Description
[V.2] This is a companion to Great moments in mathematics before 1650. It can be appreciated by anyone with a working knowledge of beginning deferential and integral calculus. Includes: the birth of mathematical probability, the invention of the differential calculus, the discovery of non-Euclidean geometry, the discovery of noncommutative algebra, and the resolution of the four-color problem.

Fibonacci's De Practica Geometrie

Fibonacci's De Practica Geometrie PDF Author: Barnabas Hughes
Publisher: Springer Science & Business Media
ISBN: 0387729313
Category : Mathematics
Languages : en
Pages : 440

Book Description
Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 – ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De Practica Geometrie. This translation offers a reconstruction of De Practica Geometrie as the author judges Fibonacci wrote it, thereby correcting inaccuracies found in numerous modern histories. It is a high quality translation with supplemental text to explain text that has been more freely translated. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.