Author: Joseph A. November
Publisher: JHU Press
ISBN: 1421406659
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
Winner of the Computer History Museum Prize of the Special Interest Group: Computers, Information, and Society Imagine biology and medicine today without computers. What would laboratory work be like if electronic databases and statistical software did not exist? Would disciplines like genomics even be feasible if we lacked the means to manage and manipulate huge volumes of digital data? How would patients fare in a world absent CT scans, programmable pacemakers, and computerized medical records? Today, computers are a critical component of almost all research in biology and medicine. Yet, just fifty years ago, the study of life was by far the least digitized field of science, its living subject matter thought too complex and dynamic to be meaningfully analyzed by logic-driven computers. In this long-overdue study, historian Joseph November explores the early attempts, in the 1950s and 1960s, to computerize biomedical research in the United States. Computers and biomedical research are now so intimately connected that it is difficult to imagine when such critical work was offline. Biomedical Computing transports readers back to such a time and investigates how computers first appeared in the research lab and doctor's office. November examines the conditions that made possible the computerization of biology—including strong technological, institutional, and political support from the National Institutes of Health—and shows not only how digital technology transformed the life sciences but also how the intersection of the two led to important developments in computer architecture and software design. The history of this phenomenon has been only vaguely understood. November's thoroughly researched and lively study makes clear for readers the motives behind computerizing the study of life and how that technology profoundly affects biomedical research today.
Biomedical Computing
Computational Learning Approaches to Data Analytics in Biomedical Applications
Author: Khalid Al-Jabery
Publisher: Academic Press
ISBN: 0128144831
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor
Publisher: Academic Press
ISBN: 0128144831
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor
Introductory Statistics for the Life and Biomedical Sciences
Author: Julie Vu
Publisher:
ISBN: 9781943450114
Category :
Languages : en
Pages :
Book Description
Introduction to Statistics for the Life and Biomedical Sciences has been written to be used in conjunction with a set of self-paced learning labs. These labs guide students through learning how to apply statistical ideas and concepts discussed in the text with the R computing language.The text discusses the important ideas used to support an interpretation (such as the notion of a confidence interval), rather than the process of generating such material from data (such as computing a confidence interval for a particular subset of individuals in a study). This allows students whose main focus is understanding statistical concepts to not be distracted by the details of a particular software package. In our experience, however, we have found that many students enter a research setting after only a single course in statistics. These students benefit from a practical introduction to data analysis that incorporates the use of a statistical computing language.In a classroom setting, we have found it beneficial for students to start working through the labs after having been exposed to the corresponding material in the text, either from self-reading or through an instructor presenting the main ideas. The labs are organized by chapter, and each lab corresponds to a particular section or set of sections in the text.There are traditional exercises at the end of each chapter that do not require the use of computing. In the current posting, Chapters 1 - 5 have end-of-chapter exercises. More complicated methods, such as multiple regression, do not lend themselves to hand calculation and computing is necessary for gaining practical experience with these methods. The lab exercises for these later chapters become an increasingly important part of mastering the material.An essential component of the learning labs are the "Lab Notes" accompanying each chapter. The lab notes are a detailed reference guide to the R functions that appear in the labs, written to be accessible to a first-time user of a computing language. They provide more explanation than available in the R help documentation, with examples specific to what is demonstrated in the labs.
Publisher:
ISBN: 9781943450114
Category :
Languages : en
Pages :
Book Description
Introduction to Statistics for the Life and Biomedical Sciences has been written to be used in conjunction with a set of self-paced learning labs. These labs guide students through learning how to apply statistical ideas and concepts discussed in the text with the R computing language.The text discusses the important ideas used to support an interpretation (such as the notion of a confidence interval), rather than the process of generating such material from data (such as computing a confidence interval for a particular subset of individuals in a study). This allows students whose main focus is understanding statistical concepts to not be distracted by the details of a particular software package. In our experience, however, we have found that many students enter a research setting after only a single course in statistics. These students benefit from a practical introduction to data analysis that incorporates the use of a statistical computing language.In a classroom setting, we have found it beneficial for students to start working through the labs after having been exposed to the corresponding material in the text, either from self-reading or through an instructor presenting the main ideas. The labs are organized by chapter, and each lab corresponds to a particular section or set of sections in the text.There are traditional exercises at the end of each chapter that do not require the use of computing. In the current posting, Chapters 1 - 5 have end-of-chapter exercises. More complicated methods, such as multiple regression, do not lend themselves to hand calculation and computing is necessary for gaining practical experience with these methods. The lab exercises for these later chapters become an increasingly important part of mastering the material.An essential component of the learning labs are the "Lab Notes" accompanying each chapter. The lab notes are a detailed reference guide to the R functions that appear in the labs, written to be accessible to a first-time user of a computing language. They provide more explanation than available in the R help documentation, with examples specific to what is demonstrated in the labs.
Data Analysis for the Life Sciences with R
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1498775861
Category : Mathematics
Languages : en
Pages : 537
Book Description
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
Publisher: CRC Press
ISBN: 1498775861
Category : Mathematics
Languages : en
Pages : 537
Book Description
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
OpenIntro Statistics
Author: David Diez
Publisher:
ISBN: 9781943450046
Category :
Languages : en
Pages :
Book Description
The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Publisher:
ISBN: 9781943450046
Category :
Languages : en
Pages :
Book Description
The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Computational Topology for Biomedical Image and Data Analysis
Author: Rodrigo Rojas Moraleda
Publisher: CRC Press
ISBN: 0429810997
Category : Medical
Languages : en
Pages : 116
Book Description
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
Publisher: CRC Press
ISBN: 0429810997
Category : Medical
Languages : en
Pages : 116
Book Description
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
Computational Methods in Biomedical Research
Author: Ravindra Khattree
Publisher: CRC Press
ISBN: 9781420010923
Category : Mathematics
Languages : en
Pages : 432
Book Description
Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging computational statistical methods that are used in biomedical research. Written by active researchers in the field, this authoritative collection covers a wide range of topics. It introduces each topic at a basic level, before moving on to more advanced discussions of applications. The book begins with microarray data analysis, machine learning techniques, and mass spectrometry-based protein profiling. It then uses state space models to predict US cancer mortality rates and provides an overview of the application of multistate models in analyzing multiple failure times. The book also describes various Bayesian techniques, the sequential monitoring of randomization tests, mixed-effects models, and the classification rules for repeated measures data. The volume concludes with estimation methods for analyzing longitudinal data. Supplying the knowledge necessary to perform sophisticated statistical analyses, this reference is a must-have for anyone involved in advanced biomedical and pharmaceutical research. It will help in the quest to identify potential new drugs for the treatment of a variety of diseases.
Publisher: CRC Press
ISBN: 9781420010923
Category : Mathematics
Languages : en
Pages : 432
Book Description
Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging computational statistical methods that are used in biomedical research. Written by active researchers in the field, this authoritative collection covers a wide range of topics. It introduces each topic at a basic level, before moving on to more advanced discussions of applications. The book begins with microarray data analysis, machine learning techniques, and mass spectrometry-based protein profiling. It then uses state space models to predict US cancer mortality rates and provides an overview of the application of multistate models in analyzing multiple failure times. The book also describes various Bayesian techniques, the sequential monitoring of randomization tests, mixed-effects models, and the classification rules for repeated measures data. The volume concludes with estimation methods for analyzing longitudinal data. Supplying the knowledge necessary to perform sophisticated statistical analyses, this reference is a must-have for anyone involved in advanced biomedical and pharmaceutical research. It will help in the quest to identify potential new drugs for the treatment of a variety of diseases.
An Introduction to Medical Statistics
Author: Martin Bland
Publisher: Oxford University Press
ISBN: 0192518399
Category : Medical
Languages : en
Pages : 737
Book Description
Now in its Fourth Edition, An Introduction to Medical Statistics continues to be a 'must-have' textbook for anyone who needs a clear logical guide to the subject. Written in an easy-to-understand style and packed with real life examples, the text clearly explains the statistical principles used in the medical literature. Taking readers through the common statistical methods seen in published research and guidelines, the text focuses on how to interpret and analyse statistics for clinical practice. Using extracts from real studies, the author illustrates how data can be employed correctly and incorrectly in medical research helping readers to evaluate the statistics they encounter and appropriately implement findings in clinical practice. End of chapter exercises, case studies and multiple choice questions help readers to apply their learning and develop their own interpretative skills. This thoroughly revised edition includes new chapters on meta-analysis, missing data, and survival analysis.
Publisher: Oxford University Press
ISBN: 0192518399
Category : Medical
Languages : en
Pages : 737
Book Description
Now in its Fourth Edition, An Introduction to Medical Statistics continues to be a 'must-have' textbook for anyone who needs a clear logical guide to the subject. Written in an easy-to-understand style and packed with real life examples, the text clearly explains the statistical principles used in the medical literature. Taking readers through the common statistical methods seen in published research and guidelines, the text focuses on how to interpret and analyse statistics for clinical practice. Using extracts from real studies, the author illustrates how data can be employed correctly and incorrectly in medical research helping readers to evaluate the statistics they encounter and appropriately implement findings in clinical practice. End of chapter exercises, case studies and multiple choice questions help readers to apply their learning and develop their own interpretative skills. This thoroughly revised edition includes new chapters on meta-analysis, missing data, and survival analysis.
Computational Intelligence and Data Sciences
Author: Ayodeji Olalekan Salau
Publisher:
ISBN: 9781032123172
Category : Computers
Languages : en
Pages : 0
Book Description
This book presents futuristic trends in computational intelligence including algorithms used in different application domains in health informatics covering bio-medical, bioinformatics, &biological sciences. It provides conceptual framework with a focus on computational intelligence techniques in biomedical engineering &health informatics.
Publisher:
ISBN: 9781032123172
Category : Computers
Languages : en
Pages : 0
Book Description
This book presents futuristic trends in computational intelligence including algorithms used in different application domains in health informatics covering bio-medical, bioinformatics, &biological sciences. It provides conceptual framework with a focus on computational intelligence techniques in biomedical engineering &health informatics.
Medical Statistics from Scratch
Author: David Bowers
Publisher: John Wiley & Sons
ISBN: 9780470724446
Category : Medical
Languages : en
Pages : 303
Book Description
This long awaited second edition of this bestseller continues toprovide a comprehensive, user friendly, down-to-earth guide toelementary statistics. The book presents a detailed account ofthe most important procedures for the analysis of data, from thecalculation of simple proportions, to a variety of statisticaltests, and the use of regression models for modeling of clinicaloutcomes. The level of mathematics is kept to a minimum to make thematerial easily accessible to the novice, and a multitude ofillustrative cases are included in every chapter, drawn from thecurrent research literature. The new edition has beencompletely revised and updated and includes new chapters on basicquantitative methods, measuring survival, measurement scales,diagnostic testing, bayesian methods, meta-analysis and systematicreviews. "... After years of trying and failing, this is the only book onstatistics that i have managed to read and understand" - NaveedKirmani, Surgical Registrar, South London Healthcare HHS Trust,UK
Publisher: John Wiley & Sons
ISBN: 9780470724446
Category : Medical
Languages : en
Pages : 303
Book Description
This long awaited second edition of this bestseller continues toprovide a comprehensive, user friendly, down-to-earth guide toelementary statistics. The book presents a detailed account ofthe most important procedures for the analysis of data, from thecalculation of simple proportions, to a variety of statisticaltests, and the use of regression models for modeling of clinicaloutcomes. The level of mathematics is kept to a minimum to make thematerial easily accessible to the novice, and a multitude ofillustrative cases are included in every chapter, drawn from thecurrent research literature. The new edition has beencompletely revised and updated and includes new chapters on basicquantitative methods, measuring survival, measurement scales,diagnostic testing, bayesian methods, meta-analysis and systematicreviews. "... After years of trying and failing, this is the only book onstatistics that i have managed to read and understand" - NaveedKirmani, Surgical Registrar, South London Healthcare HHS Trust,UK