BioMath in the Schools PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download BioMath in the Schools PDF full book. Access full book title BioMath in the Schools by Margaret B. Cozzens. Download full books in PDF and EPUB format.

BioMath in the Schools

BioMath in the Schools PDF Author: Margaret B. Cozzens
Publisher: American Mathematical Soc.
ISBN: 0821842951
Category : Computers
Languages : en
Pages : 266

Book Description
Even though contemporary biology and mathematics are inextricably linked, high school biology and mathematics courses have traditionally been taught in isolation. But this is beginning to change. This volume presents papers related to the integration of biology and mathematics in high school classes. The first part of the book provides the rationale for integrating mathematics and biology in high school courses as well as opportunities for doing so. The second part explores the development and integration of curricular materials and includes responses from teachers. Papers in the third part of the book explore the interconnections between biology and mathematics in light of new technologies in biology. The last paper in the book discusses what works and what doesn't and presents positive responses from students to the integration of mathematics and biology in their classes.

BioMath in the Schools

BioMath in the Schools PDF Author: Margaret B. Cozzens
Publisher: American Mathematical Soc.
ISBN: 0821842951
Category : Computers
Languages : en
Pages : 266

Book Description
Even though contemporary biology and mathematics are inextricably linked, high school biology and mathematics courses have traditionally been taught in isolation. But this is beginning to change. This volume presents papers related to the integration of biology and mathematics in high school classes. The first part of the book provides the rationale for integrating mathematics and biology in high school courses as well as opportunities for doing so. The second part explores the development and integration of curricular materials and includes responses from teachers. Papers in the third part of the book explore the interconnections between biology and mathematics in light of new technologies in biology. The last paper in the book discusses what works and what doesn't and presents positive responses from students to the integration of mathematics and biology in their classes.

Biomathematics

Biomathematics PDF Author: S. Andersson
Publisher: Elsevier
ISBN: 0080528074
Category : Mathematics
Languages : en
Pages : 535

Book Description
This book presents new mathematics for the description of structure and dynamics in molecular and cellular biology. On an exponential scale it is possible to combine functions describing inner organisation, including finite periodicity, with functions for outside morphology into a complete definition of structure. This mathematics is particularly fruitful to apply at molecular and atomic distances. The structure descriptions can then be related to atomic and molecular forces and provide information on structural mechanisms. The calculations have been focussed on lipid membranes forming the surface layers of cell organelles. Calculated surfaces represent the mid-surface of the lipid bilayer. Membrane dynamics such as vesicle transport are described in this new language. Periodic membrane assemblies exhibit conformations based on the standing wave oscillations of the bilayer, considered to reflect the true dynamic nature of periodic membrane structures. As an illustration the structure of an endoplasmatic reticulum has been calculated. The transformation of such cell membrane assemblies into cubosomes seems to reflect a transition into vegetative states. The organisation of the lipid bilayer of nerve cells is analyzed, taking into account an earlier observed lipid bilayer phase transition associated with the depolarisation of the membrane. Evidence is given for a new structure of the alveolar surface, relating the mathematical surface defining the bilayer organisation to new experimental data. The surface layer is proposed to consist of a coherent phase, consisting of a lipid-protein bilayer curved according to a classical surface - the CLP surface. Without employing this new mathematics it would not be possible to give an analytical description of this structure and its deformation during the respiration cycle. In more general terms this mathematics is applied to the description of the structure and dynamic properties of motor proteins, cytoskeleton proteins, and RNA/DNA. On a macroscopic scale the motions of cilia, sperm and flagella are modelled. This mathematical description of biological structure and dynamics, biomathematics, also provides significant new information in order to understand the mechanisms governing shape of living organisms.

Bio Mathematics

Bio Mathematics PDF Author:
Publisher: Krishna Prakashan Media
ISBN: 9788182830257
Category :
Languages : en
Pages : 252

Book Description


Biomath

Biomath PDF Author: Robert W. Keck
Publisher: Benjamin Cummings
ISBN: 9780805365245
Category : Mathematics
Languages : en
Pages : 328

Book Description
This book includes 250 problems that apply to all aspects of introductory biology.

Laboratory Manual of Biomathematics

Laboratory Manual of Biomathematics PDF Author: Raina Robeva
Publisher: Academic Press
ISBN: 0080565042
Category : Mathematics
Languages : en
Pages : 187

Book Description
Laboratory Manual of Biomathematics is a companion to the textbook An Invitation to Biomathematics. This laboratory manual expertly aids students who wish to gain a deeper understanding of solving biological issues with computer programs. It provides hands-on exploration of model development, model validation, and model refinement, enabling students to truly experience advancements made in biology by mathematical models. Each of the projects offered can be used as individual module in traditional biology or mathematics courses such as calculus, ordinary differential equations, elementary probability, statistics, and genetics. Biological topics include: Ecology, Toxicology, Microbiology, Epidemiology, Genetics, Biostatistics, Physiology, Cell Biology, and Molecular Biology . Mathematical topics include Discrete and continuous dynamical systems, difference equations, differential equations, probability distributions, statistics, data transformation, risk function, statistics, approximate entropy, periodic components, and pulse-detection algorithms. It includes more than 120 exercises derived from ongoing research studies. This text is designed for courses in mathematical biology, undergraduate biology majors, as well as general mathematics. The reader is not expected to have any extensive background in either math or biology. - Can be used as a computer lab component of a course in biomathematics or as homework projects for independent student work - Biological topics include: Ecology, Toxicology, Microbiology, Epidemiology, Genetics, Biostatistics, Physiology, Cell Biology, and Molecular Biology - Mathematical topics include: Discrete and continuous dynamical systems, difference equations, differential equations, probability distributions, statistics, data transformation, risk function, statistics, approximate entropy, periodic components, and pulse-detection algorithms - Includes more than 120 exercises derived from ongoing research studies

An Invitation to Biomathematics

An Invitation to Biomathematics PDF Author: Raina Robeva
Publisher: Academic Press
ISBN: 0080550991
Category : Mathematics
Languages : en
Pages : 466

Book Description
Essential for all biology and biomathematics courses, this textbook provides students with a fresh perspective of quantitative techniques in biology in a field where virtually any advance in the life sciences requires a sophisticated mathematical approach. An Invitation to Biomathematics, expertly written by a team of experienced educators, offers students a solid understanding of solving biological problems with mathematical applications. This text succeeds in enabling students to truly experience advancements made in biology through mathematical models by containing computer-based hands-on laboratory projects with emphasis on model development, model validation, and model refinement. The supplementary work, Laboratory Manual of Biomathematics is available separately ISBN 0123740223, or as a set ISBN: 0123740290) - Provides a complete guide for development of quantification skills crucial for applying mathematical methods to biological problems - Includes well-known examples from across disciplines in the life sciences including modern biomedical research - Explains how to use data sets or dynamical processes to build mathematical models - Offers extensive illustrative materials - Written in clear and easy-to-follow language without assuming a background in math or biology - A laboratory manual is available for hands-on, computer-assisted projects based on material covered in the text

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution PDF Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 1400840910
Category : Science
Languages : en
Pages : 745

Book Description
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

Advanced Topics In Biomathematics: Proceedings Of The International Conference On Mathematical Biology

Advanced Topics In Biomathematics: Proceedings Of The International Conference On Mathematical Biology PDF Author: Lansun Chen
Publisher: World Scientific
ISBN: 9814544744
Category :
Languages : en
Pages : 342

Book Description
This book provides an excellent overview of current developments in a wide range of topics in biomathematics, such as population dynamics, neural networks, fishery markets, transmission of infectious diseases, genetic analysis, biostatistics and biomechanics. The contributors are leading researchers from Australia, Canada, the People's Republic of China, Hungary, Iceland, Italy, Japan, Singapore and the USA.

Mathematical Structures of Epidemic Systems

Mathematical Structures of Epidemic Systems PDF Author: Vincenzo Capasso
Publisher: Springer Science & Business Media
ISBN: 3540565264
Category : Mathematics
Languages : en
Pages : 291

Book Description
The dynamics of infectious diseases represents one of the oldest and ri- est areas of mathematical biology. From the classical work of Hamer (1906) and Ross (1911) to the spate of more modern developments associated with Anderson and May, Dietz, Hethcote, Castillo-Chavez and others, the subject has grown dramatically both in volume and in importance. Given the pace of development, the subject has become more and more di?use, and the need to provide a framework for organizing the diversity of mathematical approaches has become clear. Enzo Capasso, who has been a major contributor to the mathematical theory, has done that in the present volume, providing a system for organizing and analyzing a wide range of models, depending on the str- ture of the interaction matrix. The ?rst class, the quasi-monotone or positive feedback systems, can be analyzed e?ectively through the use of comparison theorems, that is the theory of order-preserving dynamical systems; the s- ond, the skew-symmetrizable systems, rely on Lyapunov methods. Capasso develops the general mathematical theory, and considers a broad range of - amples that can be treated within one or the other framework. In so doing, he has provided the ?rst steps towards the uni?cation of the subject, and made an invaluable contribution to the Lecture Notes in Biomathematics. Simon A. Levin Princeton, January 1993 Author’s Preface to Second Printing In the Preface to the First Printing of this volume I wrote: \ . .

Undergraduate Mathematics for the Life Sciences

Undergraduate Mathematics for the Life Sciences PDF Author: Glenn Ledder
Publisher: MAA
ISBN: 0883851911
Category : Education
Languages : en
Pages : 228

Book Description
There is a gap between the extensive mathematics background that is beneficial to biologists and the minimal mathematics background biology students acquire in their courses. The result is an undergraduate education in biology with very little quantitative content. New mathematics courses must be devised with the needs of biology students in mind. In this volume, authors from a variety of institutions address some of the problems involved in reforming mathematics curricula for biology students. The problems are sorted into three themes: Models, Processes, and Directions. It is difficult for mathematicians to generate curriculum ideas for the training of biologists so a number of the curriculum models that have been introduced at various institutions comprise the Models section. Processes deals with taking that great course and making sure it is institutionalized in both the biology department (as a requirement) and in the mathematics department (as a course that will live on even if the creator of the course is no longer on the faculty). Directions looks to the future, with each paper laying out a case for pedagogical developments that the authors would like to see.