Biomass Based Energy Storage Materials

Biomass Based Energy Storage Materials PDF Author: Inamuddin
Publisher: Materials Research Forum LLC
ISBN: 1644900874
Category : Technology & Engineering
Languages : en
Pages : 151

Book Description
The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production. Topics covered include: Bone Char as a Support Material to Build a Microbial Biocapacitor; Biomass Derived Composites; Lignin- and Bamboo Derived Materials, Cellulose-Derived Electrodes; Water Splitting, Fuel cells, and Supercapacitor Technologies. 465 References. Keywords: Bamboo Stick, Biochar, Bioelectrodes, Biofilm, Biomass, Bone Char, Carbon Nanofiber, Cellulose-Derived Electrodes, Fuel Cells, Green Energy, Microbial Biocapacitor, Biomass Derived Composites, High-Frequency Supercapacitors, Lignin Materials, Bamboo Materials, Lithium-Ion Batteries, Lithium-Sulfur Batteries, Natural Precursors, Porous Carbon, Supercapacitor Technology, Water Splitting.

Biomass Based Energy Storage Materials

Biomass Based Energy Storage Materials PDF Author: Inamuddin
Publisher: Materials Research Forum LLC
ISBN: 1644900866
Category : Technology & Engineering
Languages : en
Pages : 151

Book Description
The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production. Topics covered include: Bone Char as a Support Material to Build a Microbial Biocapacitor; Biomass Derived Composites; Lignin- and Bamboo Derived Materials, Cellulose-Derived Electrodes; Water Splitting, Fuel cells, and Supercapacitor Technologies. 465 References. Keywords: Bamboo Stick, Biochar, Bioelectrodes, Biofilm, Biomass, Bone Char, Carbon Nanofiber, Cellulose-Derived Electrodes, Fuel Cells, Green Energy, Microbial Biocapacitor, Biomass Derived Composites, High-Frequency Supercapacitors, Lignin Materials, Bamboo Materials, Lithium-Ion Batteries, Lithium-Sulfur Batteries, Natural Precursors, Porous Carbon, Supercapacitor Technology, Water Splitting.

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems PDF Author: A. Pandikumar
Publisher: Elsevier
ISBN: 0128195525
Category : Technology & Engineering
Languages : en
Pages : 542

Book Description
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.

Biomass for Renewable Energy, Fuels, and Chemicals

Biomass for Renewable Energy, Fuels, and Chemicals PDF Author: Donald L. Klass
Publisher: Elsevier
ISBN: 0080528058
Category : Technology & Engineering
Languages : en
Pages : 669

Book Description
Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience

Chemical Energy Storage

Chemical Energy Storage PDF Author: Robert Schlögl
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608596
Category : Technology & Engineering
Languages : en
Pages : 685

Book Description
Energy – in the headlines, discussed controversially, vital. The use of regenerative energy in many primary forms leads to the necessity to store grid dimensions for maintaining continuous supply and enabling the replacement of fossil fuel systems. Chemical energy storage is one of the possibilities besides mechano-thermal and biological systems. This work starts with the more general aspects of chemical energy storage in the context of the geosphere and evolves to dealing with aspects of electrochemistry, catalysis, synthesis of catalysts, functional analysis of catalytic processes and with the interface between electrochemistry and heterogeneous catalysis. Top-notch experts provide a sound, practical, hands-on insight into the present status of energy conversion aimed primarily at the young emerging research front.

Materials for Sustainable Energy

Materials for Sustainable Energy PDF Author: Vincent Dusastre
Publisher: World Scientific
ISBN: 9814317640
Category : Science
Languages : en
Pages : 360

Book Description
The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.

Materials in Energy Conversion, Harvesting, and Storage

Materials in Energy Conversion, Harvesting, and Storage PDF Author: Kathy Lu
Publisher: John Wiley & Sons
ISBN: 1118892380
Category : Technology & Engineering
Languages : en
Pages : 625

Book Description
First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.

Materials for Supercapacitor Applications

Materials for Supercapacitor Applications PDF Author: M. Aulice Scibioh
Publisher: Elsevier
ISBN: 0128198591
Category : Technology & Engineering
Languages : en
Pages : 402

Book Description
Materials for Supercapacitor Applications provides a snapshot of the present status of this rapidly growing field. It covers motivations, innovations, ongoing breakthroughs in research and development, innovative materials, impacts, and perspectives, as well as the challenges and technical barriers to identifying an ideal material for practical applications. This comprehensive reference by electro-chemists explains concepts in materials selection and their unique applications based on their electro-chemical properties. Chemists, chemical and electrical engineers, material scientists, and research scholars and students interested in energy will benefit from this overview of many important reference points in understanding the materials used in supercapacitors. - Provides an overview of the formulation for new materials and how to characterize them for supercapacitor applications - Describes all the information on the available materials for supercapacitor applications - Outlines potential material characterization methods - Discusses perspectives and future directions of the field

Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511

Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Bio-Based Nanomaterials

Bio-Based Nanomaterials PDF Author: Ajay Kumar Mishra
Publisher: Elsevier
ISBN: 0323852955
Category : Technology & Engineering
Languages : en
Pages : 308

Book Description
Bio-based Nanomaterials: Synthesis Protocols, Mechanisms and Applications summarizes recent developments in biocompatible and biodegradable materials, including their properties, fabrication methods, synthesis protocols and applications. The extensive use of petrochemicals, rising levels of plastic waste and manufacturing of non-biodegradable materials is a major environmental problem across the globe. Bio-based nanomaterials offer potential alternatives to address these challenging issues. The book covers key bio-based nanomaterials - including chitin, starch and nanocellulose – detailing their core properties, associated fabrication methods and synthesis protocols. Later chapters look at the range of applications for bio-based nanomaterials, from food and agriculture to environmental and biomedical. This book offers a detailed reference for those interested in sustainable nanoscale materials, including materials scientists, biomedical engineers, environmental scientists, food and agriculture manufacturers and scientists. - Covers a range of available bio-based nanomaterials, including chitin, starch and nanocellulose - Details the properties and characteristics of each bio-based nanomaterial, focusing on biocompatibility and biodegradability of sustainable materials - Reviews the fabrication methods and synthesis protocols available, discussing the pros and cons of each