Author: Francisco Arregu¡n-S nchez
Publisher: WorldFish
ISBN: 9718709622
Category : Groupers
Languages : en
Pages : 458
Book Description
Biology, Fisheries, and Culture of Tropical Groupers and Snappers
Author: Francisco Arregu¡n-S nchez
Publisher: WorldFish
ISBN: 9718709622
Category : Groupers
Languages : en
Pages : 458
Book Description
Publisher: WorldFish
ISBN: 9718709622
Category : Groupers
Languages : en
Pages : 458
Book Description
Biology and Culture of Asian Seabass Lates Calcarifer
Author: Dean R. Jerry
Publisher: CRC Press
ISBN: 1482208083
Category : Science
Languages : en
Pages : 325
Book Description
This book covers the biology, ecology, genetics and aquaculture of the Asian Seabass or barramundi (Lates calcarifer), a commercially and recreationally valuable species. It brings together in the one place reviews written by world experts in Asian seabass taxonomy, genetics, nutrition, ecology, aquaculture, reproductive and developmental biology,
Publisher: CRC Press
ISBN: 1482208083
Category : Science
Languages : en
Pages : 325
Book Description
This book covers the biology, ecology, genetics and aquaculture of the Asian Seabass or barramundi (Lates calcarifer), a commercially and recreationally valuable species. It brings together in the one place reviews written by world experts in Asian seabass taxonomy, genetics, nutrition, ecology, aquaculture, reproductive and developmental biology,
Marine Fish Culture
Author: John W. Tucker Jr.
Publisher: Springer Science & Business Media
ISBN: 1461549116
Category : Science
Languages : en
Pages : 755
Book Description
4 Water Sources ........................................ 149 Criteria ............................................. 149 Major types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 . . . . . . . . . . . . Summary ............................................ 152 5 Water Treatment ...................................... 155 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 . . . . . . . . . . . . Materials ............................................ 155 Treatment options . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 . . . . . . . . . . . System design ........................................ 169 System monitoring and control . . . . . . . . . . . . . . . . . . . . . 172 . . . . . . . . Environmental considerations .............................. 174 Summary ............................................ 174 6 Culture Units ......................................... 175 Considerations in choosing culture units ...................... 175 Characteristics of culture units . . . . . . . . . . . . . . . . . . . . . 175 . . . . . . . . Applications of culture units .............................. 191 Hatchery design " . . . . . . . . . . . . . . . . . . . . . . . . . . 208 . . . . . . . . . . . Summary ............................................ 210 7 Obtaining Fish for Stocking . ............................. 211 Stock from the wild .................................... 211 Stock from the hatchery ................................. 211 Spermatogenesis (sperm formation) ....................... 232 Oogenesis (egg formation) ............................. 232 Oocyte maturation ................................... 233 Endocrine control of oocyte maturation and ovulation .......... 237 fuduced ovulation . . . . . . . . . . . . . . . . . . . . . . . . . . 238 . . . . . . . . . . Timing and egg quality . . . . . . . . . . . . . . . . . . . . . . . 257 . . . . . . . . . Artificial fertilization ................................. 265 Care of eggs ....................................... 267 Storage of gametes ................. ' .................. 269 Natural ovulation . . . . . . . . . . . . . . . . . . . . . . . . . . 270 . . . . . . . . . . Care of broodfish . . . . . . . . . . . . . . . . . . . . . . . . . . 289 . . . . . . . . . . Egg collection .. . . . . . . . . . . . . . . . . . . . . . . . . . . 290 . . . . . . . . . . fuduced vs natural ovulation ............................ 290 Broodfish adaptability . . . . . . . . . . . . . . . . . . . . . . . . . 291 . . . . . . . . . . Examples ............................................ 291 Genetic considerations . . . . . . . . . . . . . . . . . . . . . . . . . 295 . . . . . . . . . . Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 . . . . . . . . . . . . Sex control .......................................... 296 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 . . . . . . . . . . . . . vi 8 Nutrition of Larval Fish . . . . . . . . . . . . . . . . . . . . . . . 299 . . . . . . . . . . Feeding criteria ....................................... 299 Choice and culture of foods . . . . . . . . . . . . . . . . . . . . . . 307 . . . . . . . . . General feeding practices . . . . . . . . . . . . . . . . . . . . . . . 336 . . . . . . . . . . Specific feeding practices ................................ 352 General methods used in our hatchery . . . . . . . . . . . . . . . . . 372 . . . . . . . Industrial-scale larval food processing in Italian hatcheries ......... 373 Summary ............................................ 374 9 Nutrition of Juvenile and Adult Fish ...................... 375 ............................. 375 Requirements and components Broodstock nutrition .................................... 407 Nutritional disorders .................................... 408 Environmental considerations . . . . . . . . . . . . . . . . . . . . . 411 . . . . . . . . . Feed studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 . . . . . . . . . . . . Suggested feed formulas ................................. 460 Making and storing feeds ................................ 461 Feeding methods ...................................... 464 Summary ............................................ 467 10 Energetics ............................................ 469 Energy budget components and influencing factors . . . . . . . . . . . 469 . . . .
Publisher: Springer Science & Business Media
ISBN: 1461549116
Category : Science
Languages : en
Pages : 755
Book Description
4 Water Sources ........................................ 149 Criteria ............................................. 149 Major types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 . . . . . . . . . . . . Summary ............................................ 152 5 Water Treatment ...................................... 155 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 . . . . . . . . . . . . Materials ............................................ 155 Treatment options . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 . . . . . . . . . . . System design ........................................ 169 System monitoring and control . . . . . . . . . . . . . . . . . . . . . 172 . . . . . . . . Environmental considerations .............................. 174 Summary ............................................ 174 6 Culture Units ......................................... 175 Considerations in choosing culture units ...................... 175 Characteristics of culture units . . . . . . . . . . . . . . . . . . . . . 175 . . . . . . . . Applications of culture units .............................. 191 Hatchery design " . . . . . . . . . . . . . . . . . . . . . . . . . . 208 . . . . . . . . . . . Summary ............................................ 210 7 Obtaining Fish for Stocking . ............................. 211 Stock from the wild .................................... 211 Stock from the hatchery ................................. 211 Spermatogenesis (sperm formation) ....................... 232 Oogenesis (egg formation) ............................. 232 Oocyte maturation ................................... 233 Endocrine control of oocyte maturation and ovulation .......... 237 fuduced ovulation . . . . . . . . . . . . . . . . . . . . . . . . . . 238 . . . . . . . . . . Timing and egg quality . . . . . . . . . . . . . . . . . . . . . . . 257 . . . . . . . . . Artificial fertilization ................................. 265 Care of eggs ....................................... 267 Storage of gametes ................. ' .................. 269 Natural ovulation . . . . . . . . . . . . . . . . . . . . . . . . . . 270 . . . . . . . . . . Care of broodfish . . . . . . . . . . . . . . . . . . . . . . . . . . 289 . . . . . . . . . . Egg collection .. . . . . . . . . . . . . . . . . . . . . . . . . . . 290 . . . . . . . . . . fuduced vs natural ovulation ............................ 290 Broodfish adaptability . . . . . . . . . . . . . . . . . . . . . . . . . 291 . . . . . . . . . . Examples ............................................ 291 Genetic considerations . . . . . . . . . . . . . . . . . . . . . . . . . 295 . . . . . . . . . . Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 . . . . . . . . . . . . Sex control .......................................... 296 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 . . . . . . . . . . . . . vi 8 Nutrition of Larval Fish . . . . . . . . . . . . . . . . . . . . . . . 299 . . . . . . . . . . Feeding criteria ....................................... 299 Choice and culture of foods . . . . . . . . . . . . . . . . . . . . . . 307 . . . . . . . . . General feeding practices . . . . . . . . . . . . . . . . . . . . . . . 336 . . . . . . . . . . Specific feeding practices ................................ 352 General methods used in our hatchery . . . . . . . . . . . . . . . . . 372 . . . . . . . Industrial-scale larval food processing in Italian hatcheries ......... 373 Summary ............................................ 374 9 Nutrition of Juvenile and Adult Fish ...................... 375 ............................. 375 Requirements and components Broodstock nutrition .................................... 407 Nutritional disorders .................................... 408 Environmental considerations . . . . . . . . . . . . . . . . . . . . . 411 . . . . . . . . . Feed studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 . . . . . . . . . . . . Suggested feed formulas ................................. 460 Making and storing feeds ................................ 461 Feeding methods ...................................... 464 Summary ............................................ 467 10 Energetics ............................................ 469 Energy budget components and influencing factors . . . . . . . . . . . 469 . . . .
Tropical Mariculture
Author: Sena S. De Silva
Publisher: Academic Press
ISBN: 0080543308
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
Tropical Mariculture takes an in-depth look at developmental activities in a growing industry striving towards sustainability and environmental integrity. All of the contributors to this book have considerable experience and expertise in the field of tropical mariculture, and this is the first book to bring expert contributions together. The topics covered are wide and varied, ranging from general issues such as the impact of mariculture on coastal ecosystems to genetic improvement of cultured marine species, as well as the specifics of breeding selected marine species of current importance, such as groupers and sea bass. Significant coverage is also given to the problems of larval rearing in inland aquaculture as well as the demands of water- and land-based resources in a tropical environment. This book will be essential for everyone working in and researching tropical mariculture. - Looks at developmental activities in tropical mariculture - All of the contributors are experts in the field - Covers specific breeding problems and larval rearing - Studies the environmental impact of inland aquacultural activities - Provides detailed examples of cultivated species in the tropics - Compiles mariculture strategies and discusses example species - First book to give an overview of tropical mariculture
Publisher: Academic Press
ISBN: 0080543308
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
Tropical Mariculture takes an in-depth look at developmental activities in a growing industry striving towards sustainability and environmental integrity. All of the contributors to this book have considerable experience and expertise in the field of tropical mariculture, and this is the first book to bring expert contributions together. The topics covered are wide and varied, ranging from general issues such as the impact of mariculture on coastal ecosystems to genetic improvement of cultured marine species, as well as the specifics of breeding selected marine species of current importance, such as groupers and sea bass. Significant coverage is also given to the problems of larval rearing in inland aquaculture as well as the demands of water- and land-based resources in a tropical environment. This book will be essential for everyone working in and researching tropical mariculture. - Looks at developmental activities in tropical mariculture - All of the contributors are experts in the field - Covers specific breeding problems and larval rearing - Studies the environmental impact of inland aquacultural activities - Provides detailed examples of cultivated species in the tropics - Compiles mariculture strategies and discusses example species - First book to give an overview of tropical mariculture
The Israeli Journal of Aquaculture
Advances in Marine and Brackishwater Aquaculture
Author: Santhanam Perumal
Publisher: Springer
ISBN: 8132222717
Category : Science
Languages : en
Pages : 266
Book Description
This book compiles the latest findings in the field of marine and brackishwater aquaculture. It covers significant topics such as techniques of culture of live feeds (microalgae, rotifer, Artemia, marine copepod & polychaetes), while also highlighting vital themes like the culture and applications of free and marine sponge associated microbial probiotics, controlled breeding, seed production and culture of commercially important fin and shell fishes. Moreover, the book focuses on the breeding and culture of marine ornamental fishes, sea cucumber and sea urchin and discusses seaweeds culture, aqua feed formulation and nutrition, water quality management in hatchery and grow-out culture systems, fish disease diagnosis and health management and cryopreservation of fish gametes for sustainable aquaculture practices, all from a multidimensional perspective. The global fish production was 154 million tonnes in 2011 which more or less consisted of capture and culture fisheries (FAO, 2012). Roughly 80% of this is from inland-freshwater aquaculture and the remainder from capture fisheries in the marine and brackishwater sector. However, marine and brackishwater catches have recently begun to diminish due to overexploitation, climate change and pollution. The UNEP report affirmed that if the world remains on its current course of overfishing, by 2050, the ocean fish stock could become extinct or no longer commercially viable to exploit. In these circumstances, aquaculture is considered to be a promising sector to fulfill our future protein requirement. However, brackishwater and marine fish production now face serious challenges due to e.g. lack of quality fish seeds, feeds, poor water quality management and diseases. Fisheries and aquaculture sectors play a vital role as potential sources of nutritional security and food safety around the globe. Fish food is rich in protein, vitamins, phosphorous, calcium, zinc, selenium etc. In addition, fish contains omega-3 fatty acids, which help to prevent cardiovascular diseases. Fish food can also provide several health benefits to consumers. The omega 3 fatty acids found in fish can reduce the levels of LDL cholesterol (the “bad” cholesterol) and increase the HDL levels (the “good” cholesterol). Research conducted in Australia has proved that fish consumption can be used to cure hypertension and obesity. It is also reported that people who ate more fish were less prone to asthma and were able to breathe more easily. Omega 3 fish oil or fish consumption can help to prevent three of the most common forms of cancer: breast cancer, colon and prostate cancer. The omega 3 fatty acids present in fish or fish oil induce faster hair growth and prevent hair loss. Since most varieties of fish are rich in protein, eating fish helps to keep hair healthy. Furthermore, fish or fish oil helps in improving the condition of dry skin, giving it a healthy glow. It is useful in treating various skin problems such as eczema, psoriasis, itching, redness of skin, skin lesions and rashes. It is well known that eating fish improves vision and prevents Alzheimer’s and type-2 diabetes, and can combat arthritis. Further, fish oil or fish is good for pregnant women, as the DHA present in it helps in the development of the baby’s eyes and brain. It helps to avoid premature births, low birth weights and miscarriages. In addition, it is widely known that fish can be a good substitute for pulses in cereal-based diets for the poor. The global fish production was roughly 154 million tonnes in 2011 (FAO, 2012). It is estimated that by 2020 global fish requirements will be over 200 million tonnes; as such, innovative technological improvements are called for in order to improve the production and productivity in fisheries. In this context, this book provides valuable information for academics, scientists, researchers, government officials and farmers on innovative technological advances for sustainable fish production using aquaculture methods. The book identifies the main issues and trends in marine and brackishwater aquaculture from a global perspective in general and in the Indian context in particular. It includes 23 chapters written by prominent researchers from various institutes and universities across India, who address the latest aquaculture technologies with distinctive approaches to support academics, researchers and graduates in the fields of Fisheries, Aquaculture, Marine Science, Marine Biology, Marine Biotechnology, Zoology and Agricultural Sciences. Our thanks go to our contributors; we are confident that all readers will immensely benefit from their valued expertise in the field of marine and brackishwater aquaculture.
Publisher: Springer
ISBN: 8132222717
Category : Science
Languages : en
Pages : 266
Book Description
This book compiles the latest findings in the field of marine and brackishwater aquaculture. It covers significant topics such as techniques of culture of live feeds (microalgae, rotifer, Artemia, marine copepod & polychaetes), while also highlighting vital themes like the culture and applications of free and marine sponge associated microbial probiotics, controlled breeding, seed production and culture of commercially important fin and shell fishes. Moreover, the book focuses on the breeding and culture of marine ornamental fishes, sea cucumber and sea urchin and discusses seaweeds culture, aqua feed formulation and nutrition, water quality management in hatchery and grow-out culture systems, fish disease diagnosis and health management and cryopreservation of fish gametes for sustainable aquaculture practices, all from a multidimensional perspective. The global fish production was 154 million tonnes in 2011 which more or less consisted of capture and culture fisheries (FAO, 2012). Roughly 80% of this is from inland-freshwater aquaculture and the remainder from capture fisheries in the marine and brackishwater sector. However, marine and brackishwater catches have recently begun to diminish due to overexploitation, climate change and pollution. The UNEP report affirmed that if the world remains on its current course of overfishing, by 2050, the ocean fish stock could become extinct or no longer commercially viable to exploit. In these circumstances, aquaculture is considered to be a promising sector to fulfill our future protein requirement. However, brackishwater and marine fish production now face serious challenges due to e.g. lack of quality fish seeds, feeds, poor water quality management and diseases. Fisheries and aquaculture sectors play a vital role as potential sources of nutritional security and food safety around the globe. Fish food is rich in protein, vitamins, phosphorous, calcium, zinc, selenium etc. In addition, fish contains omega-3 fatty acids, which help to prevent cardiovascular diseases. Fish food can also provide several health benefits to consumers. The omega 3 fatty acids found in fish can reduce the levels of LDL cholesterol (the “bad” cholesterol) and increase the HDL levels (the “good” cholesterol). Research conducted in Australia has proved that fish consumption can be used to cure hypertension and obesity. It is also reported that people who ate more fish were less prone to asthma and were able to breathe more easily. Omega 3 fish oil or fish consumption can help to prevent three of the most common forms of cancer: breast cancer, colon and prostate cancer. The omega 3 fatty acids present in fish or fish oil induce faster hair growth and prevent hair loss. Since most varieties of fish are rich in protein, eating fish helps to keep hair healthy. Furthermore, fish or fish oil helps in improving the condition of dry skin, giving it a healthy glow. It is useful in treating various skin problems such as eczema, psoriasis, itching, redness of skin, skin lesions and rashes. It is well known that eating fish improves vision and prevents Alzheimer’s and type-2 diabetes, and can combat arthritis. Further, fish oil or fish is good for pregnant women, as the DHA present in it helps in the development of the baby’s eyes and brain. It helps to avoid premature births, low birth weights and miscarriages. In addition, it is widely known that fish can be a good substitute for pulses in cereal-based diets for the poor. The global fish production was roughly 154 million tonnes in 2011 (FAO, 2012). It is estimated that by 2020 global fish requirements will be over 200 million tonnes; as such, innovative technological improvements are called for in order to improve the production and productivity in fisheries. In this context, this book provides valuable information for academics, scientists, researchers, government officials and farmers on innovative technological advances for sustainable fish production using aquaculture methods. The book identifies the main issues and trends in marine and brackishwater aquaculture from a global perspective in general and in the Indian context in particular. It includes 23 chapters written by prominent researchers from various institutes and universities across India, who address the latest aquaculture technologies with distinctive approaches to support academics, researchers and graduates in the fields of Fisheries, Aquaculture, Marine Science, Marine Biology, Marine Biotechnology, Zoology and Agricultural Sciences. Our thanks go to our contributors; we are confident that all readers will immensely benefit from their valued expertise in the field of marine and brackishwater aquaculture.