Author: Jianlong Wang
Publisher: Springer
ISBN: 9811046751
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
Biohydrogen Production from Organic Wastes
Author: Jianlong Wang
Publisher: Springer
ISBN: 9811046751
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
Publisher: Springer
ISBN: 9811046751
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
Biohythane
Author: Debabrata Das
Publisher: CRC Press
ISBN: 9814745308
Category : Medical
Languages : en
Pages : 340
Book Description
This book is a novel attempt at describing the fundamental aspects of and advancements in the field of biohythane production. The comprehensive collection of chapters is based on the fundamentals of heterotrophic hydrogen production and consequent methane production technologies. Emphasis is on the integration of two stages of a hybrid system for maximum gaseous energy generation from organic wastes, thus making the overall process economically viable. Readers get insight into the technological advancements made in the field of biohydrogen and biomethane production and the challenges involved in integrating these two technologies. The book also includes details of the microbiological, biochemical, and bioprocess aspects related to biohythane production, in addition to the applicability of this process, its socioeconomic concerns, and cost energy analysis, supplemented with illustrative diagrams, flowcharts, and comprehensive tables. It will be an ideal vade mecum for advanced undergraduate- and graduate-level students of biotechnology, microbiology, biochemical engineering, chemical engineering, and energy engineering; teachers and researchers in bioenergy, the environment, and biofuel production; and policy makers.
Publisher: CRC Press
ISBN: 9814745308
Category : Medical
Languages : en
Pages : 340
Book Description
This book is a novel attempt at describing the fundamental aspects of and advancements in the field of biohythane production. The comprehensive collection of chapters is based on the fundamentals of heterotrophic hydrogen production and consequent methane production technologies. Emphasis is on the integration of two stages of a hybrid system for maximum gaseous energy generation from organic wastes, thus making the overall process economically viable. Readers get insight into the technological advancements made in the field of biohydrogen and biomethane production and the challenges involved in integrating these two technologies. The book also includes details of the microbiological, biochemical, and bioprocess aspects related to biohythane production, in addition to the applicability of this process, its socioeconomic concerns, and cost energy analysis, supplemented with illustrative diagrams, flowcharts, and comprehensive tables. It will be an ideal vade mecum for advanced undergraduate- and graduate-level students of biotechnology, microbiology, biochemical engineering, chemical engineering, and energy engineering; teachers and researchers in bioenergy, the environment, and biofuel production; and policy makers.
Hydrogen Production Technologies
Author: Mehmet Sankir
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Biohydrogen Production: Sustainability of Current Technology and Future Perspective
Author: Anoop Singh
Publisher: Springer
ISBN: 8132235770
Category : Science
Languages : en
Pages : 332
Book Description
Increase in green, renewable and sustainable energy demand due to higher environmental impacts (e.g. Greenhouse gases emissions, climate change, etc.) on consumption of fossil fuel resource put down an extra pressure on government, researchers and industrialists. Among several available biofuel options, biohydrogen is considered as one of the best environmentally clean fuel and a strong candidate to fulfil the future demand of sustainable energy resource. Although, biohydrogen production technology and its use as a fuel is still in infancy stage. Selection of most sustainable production pathway, increase in production upto industrial scale and cost efficiency are some issue still persist with the biohydrogen research. “Biohydrogen Production: Sustainability of Current Technology and Future Perspective” is giving an insight for the sustainable production of biohydrogen at industrial scale. The process of biohydrogen production is complex and to opt the best suited production system for industrial scale is a frantic task. This book will provide an in depth information on all available technologies for biohydrogen production and feedstock options to choose upon. This book is also providing information on present status of the research in the field and possibility to change future fuel economy in to biohydrogen economy. Experts views provided in the chapters by renowned researchers from all over the globe in the field of biohydrogen research made this book a cornucopia of present research and future perspective of biohydrogen. This book is targeted at the researchers working on biohydrogen as well as the bioenergy scientist planning to move towards biohydrogen research. This book will provide a platform for motivation of researchers and industrialists for innovative ideas and thoughts to bring biohydrogen production at industrial scale.
Publisher: Springer
ISBN: 8132235770
Category : Science
Languages : en
Pages : 332
Book Description
Increase in green, renewable and sustainable energy demand due to higher environmental impacts (e.g. Greenhouse gases emissions, climate change, etc.) on consumption of fossil fuel resource put down an extra pressure on government, researchers and industrialists. Among several available biofuel options, biohydrogen is considered as one of the best environmentally clean fuel and a strong candidate to fulfil the future demand of sustainable energy resource. Although, biohydrogen production technology and its use as a fuel is still in infancy stage. Selection of most sustainable production pathway, increase in production upto industrial scale and cost efficiency are some issue still persist with the biohydrogen research. “Biohydrogen Production: Sustainability of Current Technology and Future Perspective” is giving an insight for the sustainable production of biohydrogen at industrial scale. The process of biohydrogen production is complex and to opt the best suited production system for industrial scale is a frantic task. This book will provide an in depth information on all available technologies for biohydrogen production and feedstock options to choose upon. This book is also providing information on present status of the research in the field and possibility to change future fuel economy in to biohydrogen economy. Experts views provided in the chapters by renowned researchers from all over the globe in the field of biohydrogen research made this book a cornucopia of present research and future perspective of biohydrogen. This book is targeted at the researchers working on biohydrogen as well as the bioenergy scientist planning to move towards biohydrogen research. This book will provide a platform for motivation of researchers and industrialists for innovative ideas and thoughts to bring biohydrogen production at industrial scale.
BioH2 & BioCH4 Through Anaerobic Digestion
Author: Bernardo Ruggeri
Publisher: Springer
ISBN: 1447164318
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.
Publisher: Springer
ISBN: 1447164318
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.
Biotechnology for Zero Waste
Author: Chaudhery Mustansar Hussain
Publisher: John Wiley & Sons
ISBN: 3527348980
Category : Science
Languages : en
Pages : 628
Book Description
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
Publisher: John Wiley & Sons
ISBN: 3527348980
Category : Science
Languages : en
Pages : 628
Book Description
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
Biohydrogen
Author: Kuan-Yeow Show
Publisher: Elsevier Inc. Chapters
ISBN: 0128083638
Category : Science
Languages : en
Pages : 39
Book Description
In combating global warming and other environmental issues over the use of fossil fuels, extensive research has been focusing on developing hydrogen production from biological processes. Biohydrogen is considered a promising future biofuel because of its intrinsic clean and high-energy content properties and the way it is produced. In addition to being produced through environmentally friendly biological means, its conversion to energy yields only pure water, which is an ideal energy carrier in reducing greenhouse gas emissions from fossil fuel combustion. Unlike other well-developed biofuels such as bioethanol and biodiesel, biohydrogen production is still in the early stage of development. A variety of technologies are being developed for biohydrogen production. This chapter presents a review of the state-of-the-art and perspectives of bioprocess design for biohydrogen production research in the context of pathways, microorganisms, metabolic flux analysis, process design, and reactor system. Challenges and prospects of biohydrogen production are also outlined.
Publisher: Elsevier Inc. Chapters
ISBN: 0128083638
Category : Science
Languages : en
Pages : 39
Book Description
In combating global warming and other environmental issues over the use of fossil fuels, extensive research has been focusing on developing hydrogen production from biological processes. Biohydrogen is considered a promising future biofuel because of its intrinsic clean and high-energy content properties and the way it is produced. In addition to being produced through environmentally friendly biological means, its conversion to energy yields only pure water, which is an ideal energy carrier in reducing greenhouse gas emissions from fossil fuel combustion. Unlike other well-developed biofuels such as bioethanol and biodiesel, biohydrogen production is still in the early stage of development. A variety of technologies are being developed for biohydrogen production. This chapter presents a review of the state-of-the-art and perspectives of bioprocess design for biohydrogen production research in the context of pathways, microorganisms, metabolic flux analysis, process design, and reactor system. Challenges and prospects of biohydrogen production are also outlined.
Biological Wastewater Treatment and Resource Recovery
Author: Robina Farooq
Publisher: BoD – Books on Demand
ISBN: 9535130455
Category : Science
Languages : en
Pages : 258
Book Description
Biological treatment of wastewater is a low-cost solution for remediation of wastewater. This book focuses on the bioremediation of wastewater, its management, monitoring, role of biofilms on wastewater treatment and energy recovery. It emphasizes on organic, inorganic and micropollutants entering into the environment after conventional wastewater treatment facilities of industrial, agricultural and domestic wastewaters. The occurrence of persistent pollutants poses deleterious effects on human and environmental health. Simple solution for recovery of energy as well as water during biological treatment of wastewater is a viable option. This book provides necessary knowledge and experimental studies on emerging bioremediation processes for reducing water, air and soil pollution.
Publisher: BoD – Books on Demand
ISBN: 9535130455
Category : Science
Languages : en
Pages : 258
Book Description
Biological treatment of wastewater is a low-cost solution for remediation of wastewater. This book focuses on the bioremediation of wastewater, its management, monitoring, role of biofilms on wastewater treatment and energy recovery. It emphasizes on organic, inorganic and micropollutants entering into the environment after conventional wastewater treatment facilities of industrial, agricultural and domestic wastewaters. The occurrence of persistent pollutants poses deleterious effects on human and environmental health. Simple solution for recovery of energy as well as water during biological treatment of wastewater is a viable option. This book provides necessary knowledge and experimental studies on emerging bioremediation processes for reducing water, air and soil pollution.
Biohydrogen Production
Author: Debabrata Das
Publisher: CRC Press
ISBN: 1466517999
Category : Medical
Languages : en
Pages : 406
Book Description
Biohydrogen Production: Fundamentals and Technology Advances covers the fundamentals of biohydrogen production technology, including microbiology, biochemistry, feedstock requirements, and molecular biology of the biological hydrogen production processes. It also gives insight into scale-up problems and limitations. In addition, the book discusses mathematical modeling of the various processes involved in biohydrogen production and the software required to model the processes. The book summarizes research advances that have been made in this field and discusses bottlenecks of the various processes, which presently limit the commercialization of this technology. The authors also focus on the process economy, policy, and environmental impact of this technology, since the future of biohydrogen production depends not only on research advances, but also on economic considerations (the cost of fossil fuels), social espousal, and the development of H2 energy systems. The book describes the fundamentals of this technology interwoven with more advanced research findings. Further reading is suggested at the end of each chapter. Since the beauty of any innovation is its applicability, socioeconomic impact, and cost energy analysis, the book examines each of these points to give you a holistic picture of this technology. Illustrative diagrams, flow charts, and comprehensive tables detailing the scientific advancements provide an opportunity to understand the process comprehensively and meticulously. Written in a lucid style, the book supplies a complete knowledge bank about biohydrogen production processes.
Publisher: CRC Press
ISBN: 1466517999
Category : Medical
Languages : en
Pages : 406
Book Description
Biohydrogen Production: Fundamentals and Technology Advances covers the fundamentals of biohydrogen production technology, including microbiology, biochemistry, feedstock requirements, and molecular biology of the biological hydrogen production processes. It also gives insight into scale-up problems and limitations. In addition, the book discusses mathematical modeling of the various processes involved in biohydrogen production and the software required to model the processes. The book summarizes research advances that have been made in this field and discusses bottlenecks of the various processes, which presently limit the commercialization of this technology. The authors also focus on the process economy, policy, and environmental impact of this technology, since the future of biohydrogen production depends not only on research advances, but also on economic considerations (the cost of fossil fuels), social espousal, and the development of H2 energy systems. The book describes the fundamentals of this technology interwoven with more advanced research findings. Further reading is suggested at the end of each chapter. Since the beauty of any innovation is its applicability, socioeconomic impact, and cost energy analysis, the book examines each of these points to give you a holistic picture of this technology. Illustrative diagrams, flow charts, and comprehensive tables detailing the scientific advancements provide an opportunity to understand the process comprehensively and meticulously. Written in a lucid style, the book supplies a complete knowledge bank about biohydrogen production processes.
Advances in Hydrogen Production, Storage and Distribution
Author: Adolfo Iulianelli
Publisher: Elsevier
ISBN: 0857097733
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods
Publisher: Elsevier
ISBN: 0857097733
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods