Biogenic Sulfide Production at Low PH and Selected Metal Precipitation for E-waste Leachate Treatment PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Biogenic Sulfide Production at Low PH and Selected Metal Precipitation for E-waste Leachate Treatment PDF full book. Access full book title Biogenic Sulfide Production at Low PH and Selected Metal Precipitation for E-waste Leachate Treatment by Suthee Janyasuthiwong. Download full books in PDF and EPUB format.

Biogenic Sulfide Production at Low PH and Selected Metal Precipitation for E-waste Leachate Treatment

Biogenic Sulfide Production at Low PH and Selected Metal Precipitation for E-waste Leachate Treatment PDF Author: Suthee Janyasuthiwong
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Metal contamination in the environment is one of the persisting global issues since it not only disturbs the environmental quality but also the environment and human health. The major contribution to this problem arises mainly from anthropogenic activities such as industries. Metal scarcity has become more severe lately where some elements have been predicted to be fully eradicated in several decades from the earth crust. Recently, researchers have focused their attention to recover these metals from the waste stream and reuse it in industrial production processes. The use of agricultural wastes as a potential low cost adsorbent for heavy metal removal from wastewater is one of the most versatile technologies. In this study among the different adsorbents tested, groundnut shell established high removal efficiencies with fewer requirements for further post treatment for Cu, Pb and Zn removal. Furthermore, the batch experiments on the main effects of process parameters (pH, adsorbent dosage, contact time and initial metal concentration) showed a major effect on metal uptake and removal efficiency. For material regeneration, 0.2 M HCl was the most effective desorbing solution that did not alter the efficiency, up to three cycles of adsorption and desorption. The use of sulfate reducing bacteria (SRB) in bioreactors is another technology that can be applied for the treatment of metal contaminated wastewater. The SRB reduce sulfate into sulfide which further reacts with metals to form metal sulfide precipitates. The inverse fluidized bed (IFB) bioreactor is the configuration which shows prominence in utilizing SRB technology for metal contaminated wastewater treatment. Two IFB bioreactors were operated at different pH (7.0 and 5.0). The sulfate reducing activity (SRA) at pH 7.0 was higher than at pH 5.0, which shows that pH is the main factor that affects SRA. However, thiosulfate showed a higher efficiency than sulfate as an alternate electron acceptor. The sulfide produced using thiosulfate as the electron acceptor was 157.0 mg/L, while only 150.2 mg/L was produced using sulfate and it required an adaptation period at pH 5.0 prior to successful operation. Moreover, the IFB had shown its high efficiency for Cu, Ni and Zn removal from synthetic wastewater. The removal of Cu and Zn were more than 90% at pH 7.0 and 5.0, at an initial metal concentration of 25 mg/L. On the other hand, Ni removal was not removed at an initial concentration of 25 mg/L as it showed toxic effects toward SRB. There are various types of metal contaminated waste streams which pose as a good candidate for metal recovery include electronics waste (e-waste). This e-waste has a high potential as secondary source of metal to recover especially base metals such as Cu, Ni and Zn. Printed circuit boards (PCBs) of personal computers were evaluated as the potential secondary source of Cu, Ni and Zn using hydrometallurgical and sulfide precipitation methods. The optimal conditions for metal leaching were 0.1 M HNO3 with a liquid to solid ratio of 20 using PCBs of 0.5 - 1.0 mm particle size at 60 °C which resulted in 400 mg Cu/g PCBs. With sulfide precipitation at a stochiometric ratio of 1:1 (Cu:S2-), the recovery of Cu was very effective up to 90% from the leachate which accounted to approximately 0.41 g Cu/g PCBs, while Ni and Zn recovery were 40% (0.005 g Ni/g PCBs) and 50% (0.006 g Zn/g PCBs) for leachate from an upflow leaching column, respectively. This indicates Cu can be recovered from PCBs using sulfide precipitation.

Biogenic Sulfide Production at Low PH and Selected Metal Precipitation for E-waste Leachate Treatment

Biogenic Sulfide Production at Low PH and Selected Metal Precipitation for E-waste Leachate Treatment PDF Author: Suthee Janyasuthiwong
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Metal contamination in the environment is one of the persisting global issues since it not only disturbs the environmental quality but also the environment and human health. The major contribution to this problem arises mainly from anthropogenic activities such as industries. Metal scarcity has become more severe lately where some elements have been predicted to be fully eradicated in several decades from the earth crust. Recently, researchers have focused their attention to recover these metals from the waste stream and reuse it in industrial production processes. The use of agricultural wastes as a potential low cost adsorbent for heavy metal removal from wastewater is one of the most versatile technologies. In this study among the different adsorbents tested, groundnut shell established high removal efficiencies with fewer requirements for further post treatment for Cu, Pb and Zn removal. Furthermore, the batch experiments on the main effects of process parameters (pH, adsorbent dosage, contact time and initial metal concentration) showed a major effect on metal uptake and removal efficiency. For material regeneration, 0.2 M HCl was the most effective desorbing solution that did not alter the efficiency, up to three cycles of adsorption and desorption. The use of sulfate reducing bacteria (SRB) in bioreactors is another technology that can be applied for the treatment of metal contaminated wastewater. The SRB reduce sulfate into sulfide which further reacts with metals to form metal sulfide precipitates. The inverse fluidized bed (IFB) bioreactor is the configuration which shows prominence in utilizing SRB technology for metal contaminated wastewater treatment. Two IFB bioreactors were operated at different pH (7.0 and 5.0). The sulfate reducing activity (SRA) at pH 7.0 was higher than at pH 5.0, which shows that pH is the main factor that affects SRA. However, thiosulfate showed a higher efficiency than sulfate as an alternate electron acceptor. The sulfide produced using thiosulfate as the electron acceptor was 157.0 mg/L, while only 150.2 mg/L was produced using sulfate and it required an adaptation period at pH 5.0 prior to successful operation. Moreover, the IFB had shown its high efficiency for Cu, Ni and Zn removal from synthetic wastewater. The removal of Cu and Zn were more than 90% at pH 7.0 and 5.0, at an initial metal concentration of 25 mg/L. On the other hand, Ni removal was not removed at an initial concentration of 25 mg/L as it showed toxic effects toward SRB. There are various types of metal contaminated waste streams which pose as a good candidate for metal recovery include electronics waste (e-waste). This e-waste has a high potential as secondary source of metal to recover especially base metals such as Cu, Ni and Zn. Printed circuit boards (PCBs) of personal computers were evaluated as the potential secondary source of Cu, Ni and Zn using hydrometallurgical and sulfide precipitation methods. The optimal conditions for metal leaching were 0.1 M HNO3 with a liquid to solid ratio of 20 using PCBs of 0.5 - 1.0 mm particle size at 60 °C which resulted in 400 mg Cu/g PCBs. With sulfide precipitation at a stochiometric ratio of 1:1 (Cu:S2-), the recovery of Cu was very effective up to 90% from the leachate which accounted to approximately 0.41 g Cu/g PCBs, while Ni and Zn recovery were 40% (0.005 g Ni/g PCBs) and 50% (0.006 g Zn/g PCBs) for leachate from an upflow leaching column, respectively. This indicates Cu can be recovered from PCBs using sulfide precipitation.

Metal Removal and Recovery from Mining Wastewater and E-waste Leachate

Metal Removal and Recovery from Mining Wastewater and E-waste Leachate PDF Author: Suthee Janyasuthiwong
Publisher: CRC Press
ISBN: 0429611358
Category : Nature
Languages : en
Pages : 161

Book Description
Metal contamination in the environment is a persisting global issue. The metal reservoirs in the earth have declined due to society’s needs and due to uncontrolled mining activities. Therefore, the idea to recover metals from waste streams has emerged. In this thesis, cost competitive technologies such as adsorption using agro-wastes and precipitation using an inverse fluidized bed (IFB) reactor were investigated, with special emphasis on the recovery of base metals. Groundnut shell showed good potential for metal (Cu, Pb and Zn) removal. From artificial neural network modeling, the performance of the sulfate reducing bacteria (SRB) was found to be strongly pH dependent; the removal efficiency of Cu and Zn in the IFB at pH 5.0 was >97%. Electronic waste is a good candidate as secondary metal resource. The recovery of Cu from computer printed circuited boards (PCBs) using biogenic sulfide precipitation was investigated as well. Using this technology, Cu could be recovered at ~0.48 g Cu/g PCBs.

Metal Recovery from Electronic Waste: Biological Versus Chemical Leaching for Recovery of Copper and Gold

Metal Recovery from Electronic Waste: Biological Versus Chemical Leaching for Recovery of Copper and Gold PDF Author: Arda Işildar
Publisher: CRC Press
ISBN: 0429657021
Category : Science
Languages : en
Pages : 192

Book Description
Waste electrical and electronic equipment (WEEE) generation is a global problem. Despite the growing awareness and deterring legislation, most of the WEEE is disposed improperly, i.e. landfilled or otherwise shipped overseas, and treated in sub-standard conditions. Informal recycling of WEEE has catastrophic effects on humans and the environment. WEEE contains considerable quantities of valuable metals such as base metals, precious metals and rare earth elements (REE). Metal recovery from WEEE is conventionally carried out by pyrometallurgical and hydrometallurgical methods. In this PhD research, novel metal recovery technologies from WEEE are investigated. Using acidophilic and cyanide-generating bacteria, copper and gold were removed from crushed electronic waste with removal efficiencies of 98.4 and 44.0%, respectively. The leached metals in solution were recovered using sulfidic precipitation and electrowinning separation techniques. Finally, a techno-economic assessment of the technology was studied. This research addresses the knowledge gap on two metal extraction approaches, namely chemical and biological, from a secondary source of metals. The essential parameters of the selective metal recovery processes, scale-up potential, techno-economic and sustainability assessment have been studied.

Fundamental Modeling of Membrane Systems

Fundamental Modeling of Membrane Systems PDF Author: Patricia Luis
Publisher: Elsevier
ISBN: 0128134844
Category : Science
Languages : en
Pages : 374

Book Description
Fundamental Modelling of Membrane Systems: Membrane and Process Performance summarizes the state-of-the-art modeling approaches for all significant membrane processes, from molecular transport, to process level, helping researchers and students who carry out experimental research save time and accurately interpret experimental data. The book provides an overview of the different membrane technologies, handling micro-, ultra-, and nanofiltration, reverse and forward osmosis, pervaporation, gas permeation, supported liquid membranes, membrane contactors, membrane bioreactors and ion-exchange membrane systems. Examples of hybrid membrane systems are also included. Presents an accessible reference on how to model membranes and membrane processes Provides a clear, mathematical description of mass transfer in membrane systems Written by well-known, prominent authors in the field of membrane science

Waste Bioremediation

Waste Bioremediation PDF Author: Sunita J. Varjani
Publisher: Springer
ISBN: 9811074135
Category : Science
Languages : en
Pages : 384

Book Description
This book discusses the bioremediation of both solid and liquid waste, including regional solutions for India as well as globally relevant applications. The topics covered include pollutant reduction through composting, solutions for petroleum refinery waste, use of microorganisms in the bioremediation of industrial waste and toxicity reduction, microbial fuel cells, and microbial depolymerisation. The book also explores the biosorption of metals and the bioremediation of leachates, especially with regard to soil and groundwater remediation. It is a valuable resource for researchers, professionals, and policy makers alike.

Practical Handbook of Material Flow Analysis

Practical Handbook of Material Flow Analysis PDF Author: Paul H. Brunner
Publisher: CRC Press
ISBN: 0203507207
Category : Technology & Engineering
Languages : en
Pages : 333

Book Description
The first-ever book on this subject establishes a rigid, transparent and useful methodology for investigating the material metabolism of anthropogenic systems. Using Material Flow Analysis (MFA), the main sources, flows, stocks, and emissions of man-made and natural materials can be determined. By demonstrating the application of MFA, this book reveals how resources can be conserved and the environment protected within complex systems. The fourteen case studies presented exemplify the potential for MFA to contribute to sustainable materials management. Exercises throughout the book deepen comprehension and expertise. The authors have had success in applying MFA to various fields, and now promote the use of MFA so that future engineers and planners have a common method for solving resource-oriented problems.

Bioelectrochemical Systems

Bioelectrochemical Systems PDF Author: Korneel Rabaey
Publisher: IWA Publishing
ISBN: 184339233X
Category : Science
Languages : en
Pages : 525

Book Description
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.

Sustainable Heavy Metal Remediation

Sustainable Heavy Metal Remediation PDF Author: Eldon R. Rene
Publisher: Springer
ISBN: 331958622X
Category : Science
Languages : en
Pages : 292

Book Description
This book covers the principles, underlying mechanisms, thermodynamic functions, kinetics and modeling aspects of sustainable technologies, particularly from the standpoint of applying physical, chemical and biological processes for the treatment of wastewater polluted with heavy metals. Particular emphasis has been given to technologies that are based on adsorption, electro-coagulation, bio-precipitation, bio-solubilization, phytoremediation and microbial electrolysis. Metal contamination in the environment is one of the persisting global issues. The adverse health effects of heavy metals on human beings and its impact on the environment has been well-documented. Several physico-chemical and biological technologies have been successfully implemented to prevent and control the discharge of industrial heavy metal emissions. On the contrary, metal resource depletion has also accelerated dramatically during the 20th century due to rapid advances in industrial engineering and medical sciences, which requires large amount of raw materials. To meet the global metal demand, in recent years, novel research lines have started to focus on the recovery of metals from metal contaminated waste streams. In order to conflate both metal removal and recovery, new technologies have been successfully tested, both at the lab and pilot-scale. The target audience of this book primarily comprises of research experts, practicing engineers in the field of environmental/chemical technology and graduate students.

Soil pollution: a hidden reality

Soil pollution: a hidden reality PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251305056
Category : Technology & Engineering
Languages : en
Pages : 156

Book Description
This document presents key messages and the state-of-the-art of soil pollution, its implications on food safety and human health. It aims to set the basis for further discussion during the forthcoming Global Symposium on Soil Pollution (GSOP18), to be held at FAO HQ from May 2nd to 4th 2018. The publication has been reviewed by the Intergovernmental Technical Panel on Soil (ITPS) and contributing authors. It addresses scientific evidences on soil pollution and highlights the need to assess the extent of soil pollution globally in order to achieve food safety and sustainable development. This is linked to FAO’s strategic objectives, especially SO1, SO2, SO4 and SO5 because of the crucial role of soils to ensure effective nutrient cycling to produce nutritious and safe food, reduce atmospheric CO2 and N2O concentrations and thus mitigate climate change, develop sustainable soil management practices that enhance agricultural resilience to extreme climate events by reducing soil degradation processes. This document will be a reference material for those interested in learning more about sources and effects of soil pollution.

Resource Recovery and Recycling from Metallurgical Wastes

Resource Recovery and Recycling from Metallurgical Wastes PDF Author: S.R. Ramachandra Rao
Publisher: Elsevier
ISBN: 0080463207
Category : Science
Languages : en
Pages : 581

Book Description
Resource recovery and recycling from millions of tons of wastes produced from industrial activities is a continuing challenge for environmental engineers and researchers. Demand for conservation of resources, reduction in the quantity of waste and sustainable development with environmental control has been growing in every part of the world. Resource Recovery and Recycling from Metallurgical Wastes brings together the currently used techniques of waste processing and recycling, their applications with practical examples and economic potentials of the processes. Emphasis is on resource recovery by appropriate treatment and techniques. Material on the subject is scatterend in waste management and environmental related journals, conference volumes and government departmental technical reports. This work serves as a source book of information and as an educational technical reference for practicing scientists and engineers, as well as for students. Describes the currently used and potential techniques for the recovery of valuable resources from mineral and metallurgical wastes Discusses the applications to specific kinds of wastes with examples from current practices, as well as eht economics of the processes Presents recent and emerging technologies of potentials in metal recycling and by-product utilization