Author: Muhammad Younas
Publisher: Springer
ISBN: 3030273555
Category : Computers
Languages : en
Pages : 223
Book Description
This volume constitutes the refereed proceedings of the 5th International Conference on Big Data Innovations and Applications, Innovate-Data 2019, held in Istanbul, Turkey, in August 2019. The 15 revised full papers and 1 short paper presented in this volume were carefully reviewed and selected from 48 submissions. The papers are organized in topical sections on advances in big data systems; machine learning and data analytics; big data innovation and applications; security and risk analysis.
Big Data Innovations and Applications
Author: Muhammad Younas
Publisher: Springer
ISBN: 3030273555
Category : Computers
Languages : en
Pages : 223
Book Description
This volume constitutes the refereed proceedings of the 5th International Conference on Big Data Innovations and Applications, Innovate-Data 2019, held in Istanbul, Turkey, in August 2019. The 15 revised full papers and 1 short paper presented in this volume were carefully reviewed and selected from 48 submissions. The papers are organized in topical sections on advances in big data systems; machine learning and data analytics; big data innovation and applications; security and risk analysis.
Publisher: Springer
ISBN: 3030273555
Category : Computers
Languages : en
Pages : 223
Book Description
This volume constitutes the refereed proceedings of the 5th International Conference on Big Data Innovations and Applications, Innovate-Data 2019, held in Istanbul, Turkey, in August 2019. The 15 revised full papers and 1 short paper presented in this volume were carefully reviewed and selected from 48 submissions. The papers are organized in topical sections on advances in big data systems; machine learning and data analytics; big data innovation and applications; security and risk analysis.
Big Data and Innovation in Tourism, Travel, and Hospitality
Author: Marianna Sigala
Publisher: Springer
ISBN: 9811363390
Category : Business & Economics
Languages : en
Pages : 227
Book Description
This book brings together multi-disciplinary research and practical evidence about the role and exploitation of big data in driving and supporting innovation in tourism. It also provides a consolidated framework and roadmap summarising the major issues that both researchers and practitioners have to address for effective big data innovation. The book proposes a process-based model to identify and implement big data innovation strategies in tourism. This process framework consists of four major parts: 1) inputs required for big data innovation; 2) processes required to implement big data innovation; 3) outcomes of big data innovation; and 4) contextual factors influencing big data exploitation and advances in big data exploitation for business innovation.
Publisher: Springer
ISBN: 9811363390
Category : Business & Economics
Languages : en
Pages : 227
Book Description
This book brings together multi-disciplinary research and practical evidence about the role and exploitation of big data in driving and supporting innovation in tourism. It also provides a consolidated framework and roadmap summarising the major issues that both researchers and practitioners have to address for effective big data innovation. The book proposes a process-based model to identify and implement big data innovation strategies in tourism. This process framework consists of four major parts: 1) inputs required for big data innovation; 2) processes required to implement big data innovation; 3) outcomes of big data innovation; and 4) contextual factors influencing big data exploitation and advances in big data exploitation for business innovation.
The Elements of Big Data Value
Author: Edward Curry
Publisher: Springer Nature
ISBN: 3030681769
Category : Computers
Languages : en
Pages : 399
Book Description
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
Publisher: Springer Nature
ISBN: 3030681769
Category : Computers
Languages : en
Pages : 399
Book Description
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
Guide to Big Data Applications
Author: S. Srinivasan
Publisher: Springer
ISBN: 3319538179
Category : Technology & Engineering
Languages : en
Pages : 567
Book Description
This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.
Publisher: Springer
ISBN: 3319538179
Category : Technology & Engineering
Languages : en
Pages : 567
Book Description
This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.
AI and Big Data’s Potential for Disruptive Innovation
Author: Strydom, Moses
Publisher: IGI Global
ISBN: 1522596895
Category : Computers
Languages : en
Pages : 427
Book Description
Big data and artificial intelligence (AI) are at the forefront of technological advances that represent a potential transformational mega-trend—a new multipolar and innovative disruption. These technologies, and their associated management paradigm, are already rapidly impacting many industries and occupations, but in some sectors, the change is just beginning. Innovating ahead of emerging technologies is the new imperative for any organization that aspires to succeed in the next decade. Faced with the power of this AI movement, it is imperative to understand the dynamics and new codes required by the disruption and to adapt accordingly. AI and Big Data’s Potential for Disruptive Innovation provides emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative technologies in a variety of sectors including business, transportation, and healthcare. Featuring coverage on a broad range of topics such as semantic mapping, ethics in AI, and big data governance, this book is ideally designed for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research on the production of new and innovative mechanization and its disruptions.
Publisher: IGI Global
ISBN: 1522596895
Category : Computers
Languages : en
Pages : 427
Book Description
Big data and artificial intelligence (AI) are at the forefront of technological advances that represent a potential transformational mega-trend—a new multipolar and innovative disruption. These technologies, and their associated management paradigm, are already rapidly impacting many industries and occupations, but in some sectors, the change is just beginning. Innovating ahead of emerging technologies is the new imperative for any organization that aspires to succeed in the next decade. Faced with the power of this AI movement, it is imperative to understand the dynamics and new codes required by the disruption and to adapt accordingly. AI and Big Data’s Potential for Disruptive Innovation provides emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative technologies in a variety of sectors including business, transportation, and healthcare. Featuring coverage on a broad range of topics such as semantic mapping, ethics in AI, and big data governance, this book is ideally designed for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research on the production of new and innovative mechanization and its disruptions.
New Horizons for a Data-Driven Economy
Author: José María Cavanillas
Publisher: Springer
ISBN: 3319215698
Category : Computers
Languages : en
Pages : 312
Book Description
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
Publisher: Springer
ISBN: 3319215698
Category : Computers
Languages : en
Pages : 312
Book Description
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
Big Data Applications in Industry 4.0
Author: P. Kaliraj
Publisher: CRC Press
ISBN: 1000537668
Category : Computers
Languages : en
Pages : 446
Book Description
Industry 4.0 is the latest technological innovation in manufacturing with the goal to increase productivity in a flexible and efficient manner. Changing the way in which manufacturers operate, this revolutionary transformation is powered by various technology advances including Big Data analytics, Internet of Things (IoT), Artificial Intelligence (AI), and cloud computing. Big Data analytics has been identified as one of the significant components of Industry 4.0, as it provides valuable insights for smart factory management. Big Data and Industry 4.0 have the potential to reduce resource consumption and optimize processes, thereby playing a key role in achieving sustainable development. Big Data Applications in Industry 4.0 covers the recent advancements that have emerged in the field of Big Data and its applications. The book introduces the concepts and advanced tools and technologies for representing and processing Big Data. It also covers applications of Big Data in such domains as financial services, education, healthcare, biomedical research, logistics, and warehouse management. Researchers, students, scientists, engineers, and statisticians can turn to this book to learn about concepts, technologies, and applications that solve real-world problems. Features An introduction to data science and the types of data analytics methods accessible today An overview of data integration concepts, methodologies, and solutions A general framework of forecasting principles and applications, as well as basic forecasting models including naïve, moving average, and exponential smoothing models A detailed roadmap of the Big Data evolution and its related technological transformation in computing, along with a brief description of related terminologies The application of Industry 4.0 and Big Data in the field of education The features, prospects, and significant role of Big Data in the banking industry, as well as various use cases of Big Data in banking, finance services, and insurance Implementing a Data Lake (DL) in the cloud and the significance of a data lake in decision making
Publisher: CRC Press
ISBN: 1000537668
Category : Computers
Languages : en
Pages : 446
Book Description
Industry 4.0 is the latest technological innovation in manufacturing with the goal to increase productivity in a flexible and efficient manner. Changing the way in which manufacturers operate, this revolutionary transformation is powered by various technology advances including Big Data analytics, Internet of Things (IoT), Artificial Intelligence (AI), and cloud computing. Big Data analytics has been identified as one of the significant components of Industry 4.0, as it provides valuable insights for smart factory management. Big Data and Industry 4.0 have the potential to reduce resource consumption and optimize processes, thereby playing a key role in achieving sustainable development. Big Data Applications in Industry 4.0 covers the recent advancements that have emerged in the field of Big Data and its applications. The book introduces the concepts and advanced tools and technologies for representing and processing Big Data. It also covers applications of Big Data in such domains as financial services, education, healthcare, biomedical research, logistics, and warehouse management. Researchers, students, scientists, engineers, and statisticians can turn to this book to learn about concepts, technologies, and applications that solve real-world problems. Features An introduction to data science and the types of data analytics methods accessible today An overview of data integration concepts, methodologies, and solutions A general framework of forecasting principles and applications, as well as basic forecasting models including naïve, moving average, and exponential smoothing models A detailed roadmap of the Big Data evolution and its related technological transformation in computing, along with a brief description of related terminologies The application of Industry 4.0 and Big Data in the field of education The features, prospects, and significant role of Big Data in the banking industry, as well as various use cases of Big Data in banking, finance services, and insurance Implementing a Data Lake (DL) in the cloud and the significance of a data lake in decision making
Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics
Author: Abhishek Kumar
Publisher: CRC Press
ISBN: 1000539970
Category : Computers
Languages : en
Pages : 241
Book Description
In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity. Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges. This book is useful for research scholars and students involved in critical condition analysis and computation models.
Publisher: CRC Press
ISBN: 1000539970
Category : Computers
Languages : en
Pages : 241
Book Description
In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity. Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges. This book is useful for research scholars and students involved in critical condition analysis and computation models.
Computation and Big Data for Transport
Author: Pedro Diez
Publisher: Springer Nature
ISBN: 3030377520
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
This book gathers the outcomes of the second ECCOMAS CM3 Conference series on transport, which addressed the main challenges and opportunities that computation and big data represent for transport and mobility in the automotive, logistics, aeronautics and marine-maritime fields. Through a series of plenary lectures and mini-forums with lectures followed by question-and-answer sessions, the conference explored potential solutions and innovations to improve transport and mobility in surface and air applications. The book seeks to answer the question of how computational research in transport can provide innovative solutions to Green Transportation challenges identified in the ambitious Horizon 2020 program. In particular, the respective papers present the state of the art in transport modeling, simulation and optimization in the fields of maritime, aeronautics, automotive and logistics research. In addition, the content includes two white papers on transport challenges and prospects. Given its scope, the book will be of interest to students, researchers, engineers and practitioners whose work involves the implementation of Intelligent Transport Systems (ITS) software for the optimal use of roads, including safety and security, traffic and travel data, surface and air traffic management, and freight logistics.
Publisher: Springer Nature
ISBN: 3030377520
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
This book gathers the outcomes of the second ECCOMAS CM3 Conference series on transport, which addressed the main challenges and opportunities that computation and big data represent for transport and mobility in the automotive, logistics, aeronautics and marine-maritime fields. Through a series of plenary lectures and mini-forums with lectures followed by question-and-answer sessions, the conference explored potential solutions and innovations to improve transport and mobility in surface and air applications. The book seeks to answer the question of how computational research in transport can provide innovative solutions to Green Transportation challenges identified in the ambitious Horizon 2020 program. In particular, the respective papers present the state of the art in transport modeling, simulation and optimization in the fields of maritime, aeronautics, automotive and logistics research. In addition, the content includes two white papers on transport challenges and prospects. Given its scope, the book will be of interest to students, researchers, engineers and practitioners whose work involves the implementation of Intelligent Transport Systems (ITS) software for the optimal use of roads, including safety and security, traffic and travel data, surface and air traffic management, and freight logistics.
Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach
Author: Aboul-Ella Hassanien
Publisher: Springer
ISBN: 9783030552572
Category : Computers
Languages : en
Pages : 307
Book Description
This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into four parts. The first part discusses the forecasting and visualization of the COVID-19 data. The second part describes applications of artificial intelligence in the COVID-19 diagnosis of chest X-Ray imaging. The third part discusses the insights of artificial intelligence to stop spread of COVID-19, while the last part presents deep learning and big data analytics which help fight the COVID-19.
Publisher: Springer
ISBN: 9783030552572
Category : Computers
Languages : en
Pages : 307
Book Description
This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into four parts. The first part discusses the forecasting and visualization of the COVID-19 data. The second part describes applications of artificial intelligence in the COVID-19 diagnosis of chest X-Ray imaging. The third part discusses the insights of artificial intelligence to stop spread of COVID-19, while the last part presents deep learning and big data analytics which help fight the COVID-19.